storm(5)-分布式单词计数例子】的更多相关文章

例子需求: spout:向后端发送{"sentence":"my dog has fleas"}.一般要连数据源,此处简化写死了. 语句分割bolt(SplitSentenceBolt):订阅spout发送的tuple.每收到一个tuple,bolt会获取"sentence"对应值域的值,然后分割为一个个的单词.最后,每个单词向后发送1个tuple: {"word":"my"} {"word&qu…
package com.mengyao.storm; import java.io.File; import java.io.IOException; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import org.apache.commons.io.FileUtils; import…
1.Map与Reduce过程 1.1 Map过程 首先,Hadoop会把输入数据划分成等长的输入分片(input split) 或分片发送到MapReduce.Hadoop为每个分片创建一个map任务,由它来运行用户自定义的map函数以分析每个分片中的记录.在我们的单词计数例子中,输入是多个文件,一般一个文件对应一个分片,如果文件太大则会划分为多个分片.map函数的输入以<key, value>形式做为输入,value为文件的每一行,key为该行在文件中的偏移量(一般我们会忽视).这里map函…
一:自定义实现InputFormat *数据源来自于内存 *1.InputFormat是用于处理各种数据源的,下面是实现InputFormat,数据源是来自于内存. *1.1 在程序的job.setInputFormatClass(MyselfmemoryInputFormat.class); *1.2 实现InputFormat,extends InputFormat< , >,实现其中的两个方法,分别是getSplits(..),createRecordReader(..). *1.3 g…
   前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分布式缓存). 一 概述 定义 MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE).这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间. 适用范围:数据量大,但是数据种类小可以放入内存. 基…
前言:阅读笔记 storm和hadoop集群非常像.hadoop执行mr.storm执行topologies. mr和topologies最关键的不同点是:mr执行终于会结束,而topologies永远执行直到你kill. storm集群有两种节点:master和worker. master执行一个后台进程Nimbus,和hadoop的jobtracker相似. Nimbus负责在集群中分发代码.为工作节点分配任务,并监控故障. worker执行一个后台进程Supervisor. supervi…
Hadoop分布环境搭建步骤: 1.软硬件环境 CentOS 7.2 64 位 JDK- 1.8 Hadoo p- 2.7.4 2.安装SSH sudo yum install openssh-clients openssh-server 测试: ssh localhost 测试完事 exit命令退出 3.安装JAVA环境 sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel 配置:目录root/下面的bashrc文件结尾添加:…
 [本篇文章主要是通过一个单词计数的案例学习,来加深对storm的基本概念的理解以及基本的开发流程和如何提交并运行一个拓扑] 单词计数拓扑WordCountTopology实现的基本功能就是不停地读入一个个句子,最后输出每个单词和数目并在终端不断的更新结果,拓扑的数据流如下: 语句输入Spout:  从数据源不停地读入数据,并生成一个个句子,输出的tuple格式:{"sentence":"hello world"} 语句分割Bolt: 将一个句子分割成一个个单词,输…
MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer 任务会接收 Mapper 任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到 HDFS 的文件中.整个流程如图 Mapper任务的执行过程 每个 Mapper 任务是一个 java 进程,它会读取 HDFS 中的文件,解析成很多的键值对,经过我们覆盖的 map 方法处理后, 转换为很多的键值对再输出. 整个 Mapper 任务的处理过程…
1 导引 我们在博客<Hadoop: 单词计数(Word Count)的MapReduce实现 >中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来实现同样的功能. 2. Spark的MapReudce原理 Spark框架也是MapReduce-like模型,采用"分治-聚合"策略来对数据分布进行分布并行处理.不过该框架相比Hadoop-MapReduce,具有以下两个特点: 对大数据处理框架的输入/输出,中间数据进行建模,将这些数据…
其实我想找一门“具有Python的简洁写法和融合Java平台的优势, 同时又足够有挑战性和灵活性”的编程语言. Scala 就是一个不错的选择. Scala 有很多语言特性, 建议先掌握基础常用的: 变量.控制结构 .正则与模式匹配.集合.文件读写/目录遍历.高阶函数.并发 Actor 模型: 然后是面向对象特性:类.Trait.泛型.注解 .操作符重载;  最后再细细学习那些复杂不常用的特性:类型转换.编译解析等:注重挖掘根源性的思想,能够推导出其它的特性. 本文使用 Scala 实现 Jav…
在本系列先前的文章中,我们主要讲解了JDBC对本地事务的处理,本篇文章将讲到一个分布式事务的例子. 请通过以下方式下载github源代码: git clone https://github.com/davenkin/jta-atomikos-hibernate-activemq.git 本地事务和分布式事务的区别在于:本地事务只用于处理单一数据源事务(比如单个数据库),分布式事务可以处理多种异构的数据源,比如某个业务操作中同时包含了JDBC和JMS或者某个操作需要访问多个不同的数据库. Java…
最近在看google那篇经典的MapReduce论文,中文版可以参考孟岩推荐的 mapreduce 中文版 中文翻译 论文中提到,MapReduce的编程模型就是: 计算利用一个输入key/value对集,来产生一个输出key/value对集.MapReduce库的用户用两个函数表达这个计算:map和reduce. 用户自定义的map函数,接受一个输入对,然后产生一个中间key/value对集.MapReduce库把所有具有相同中间key I的中间value聚合在一起,然后把它们传递给reduc…
MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果按照字母顺序进行排序 Map过程 Reduce过程 WordCount的源代码 import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import…
学习Flex&Bison目标, 读懂SQLite中SQL解析部分代码 Flex&Bison简介Flex做词法分析Bison做语法分析 第一个Flex程序, wc.fl, 单词计数程序 %{ int chars = 0; int words = 0; int lines = 0; %} %% [a-zA-Z]+ { words++; chars += strlen(yytext); } \n { chars++; lines++; } . { chars++; } %% main(int a…
/** * 单词计数 */ public class LocalTridentCount { public static class MyBatchSpout implements IBatchSpout { Fields fields; HashMap<Long, List<List<Object>>> batches = new HashMap<Long, List<List<Object>>>(); public MyBatch…
在 文章 <python实现指定目录下批量文件的单词计数:串行版本>中, 总体思路是: A. 一次性获取指定目录下的所有符合条件的文件 -> B. 一次性获取所有文件的所有文件行 -> C. 解析所有文件行的单词计数 -> D. 按单词出现次数排序并输出TOPN.  A,B,C,D 是完全串行的 本文实现 并发版本. 并发版本的主要思路是: A. 每次获取一个符合条件的文件 -> B. 获取单个文件的所有文件行 -> C. 解析单个文件的所有单词计数 ->…
一.数据处理类 package com.css.hdfs; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.URI; import java.net.URISyntaxException; import java.util.HashMap; import java.util.Map.Entry; import java.util…
pom文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <mode…
上代码: public class TridentWordCount { public static class Split extends BaseFunction { @Override public void execute(TridentTuple tuple, TridentCollector collector) { String sentence = tuple.getString(0); for (String word : sentence.split(" ")) {…
需求:计算单词在文档中出现的次数,每出现一次就累加一次 遇到的问题 这个问题是<scope>provided</scope>作用域问题 https://www.cnblogs.com/biehongli/p/8316885.html 这个问题是需要把从文件中读取的内容放入list 代码如下 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://m…
import java.io.File; import java.io.IOException; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import org.apache.commons.io.FileUtils; import backtype.storm.Config; imp…
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop,本身不擅长实时的数据分析处理.两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念.本文中我就不具体阐述Storm集群和Zookeeper集群如何部署的问题,我想通过一个实际的案例切入,分析一下如何利用Storm,完成实时分析处理数据的. Storm本身是Apache托管的开源的分布式实时计…
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop,本身不擅长实时的数据分析处理.两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念.本文中我就不具体阐述Strom集群和Zookeeper集群如何部署的问题,我想通过一个实际的案例切入,分析一下如何利用Storm,完成实时分析处理数据的. Storm本身是Apache托管的开源的分布式实时计…
1 概念 目前最新的0.8.0版本里面 worker -> 进程.一个worker只能执行同一个spout/bolt的task,一个worker里面可以有多个executor. executor -> 线程. 一个executor执行可以执行多个task. task -> storm进行任务分配的基本单位. 2  例子 storm实战入门一 本节探讨一下storm具体怎么使用,明白怎么在windows下开发storm程序. 功能描述:实时随机输出一字符串. 在开发前记得导入storm需要…
数据准备 数据下载:<莎士比亚全集> 我们先来看看原始数据:首先将数据加载到RDD,然后显示数据框的前15行. shakespeareDF = sqlContext.read.text(fileName) shakespeareDF.show(15, truncate=False) 输出如下: +-------------------------------------------------------+ |value | +---------------------------------…
import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import java.io.IOException; import java.util.*; public class WordCount { /* * 实现输入内容单词的计数功能 * 一.mapper方法将输入内容处理为<key1,value1>形式 * 二.reduce方法接收mapper的…
环境说明 1.硬件说明 使用三台PC机,角色分配例如以下 2.软件说明 约定全部软件都放在/usr/local/路径下 准备工作 1.安装jdk 2.配置SSH Storm集群安装 安装流程图 1.安装Zookeeper集群 2.安装Storm依赖 zeromq.jzmq.python 2.1.安装zeromq tar -zxvf zeromq-2.1.7.tar.gz cd zeromq-2.1.7 是源代码,需先编译 ./configure 检查编译环境 安装依赖 rpm -ivh libs…
1.准备 事先在hdfs上创建两个目录: 保存上传数据的目录:hdfs://alamps:9000/library/SparkStreaming/data checkpoint的目录:hdfs://alamps:9000/library/SparkStreaming/CheckPoint_data ------------------------------------------------------ 2.源码 package stream; import java.util.Arrays;…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用.(实时计算?) Storm集群架构 Storm集群采用主从架构方式,主节点是Nimbus,从节点是Supervisor,有关调度相关的信息存储到ZooKeeper集群中,架构如下图所示 Nimbus:Storm集群的Master…