Spark高速上手之交互式分析】的更多相关文章

1.1  Spark交互式分析 执行Spark脚本前,启动Hadoop的HDFS和YARN.Spark的shell提供 了简单方式去识别API.相同也有一个强大的工具去交互式地分析数据. 两种语言有这种交换能力,各自是Scala 和 Python.以下将演示怎样使用Python来分析数据文件. 进入Spark安装主文件夹,输入以下的命令.python命令行模式将会启动. ./bin/pyspark Spark的主要抽象是一个称之为弹性分布式数据集(Resilient Distributed Da…
版权声明:本博客已经不再更新.请移步到Hadoop技术博客:https://www.iteblog.com https://blog.csdn.net/w397090770/article/details/32699893 作者:过往记忆 | 新浪微博:左手牵右手TEL | 能够转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明博客地址:http://www.iteblog.com/文章标题:<Spark高速入门指南(Quick Start Spark)>本文链接:http://w…
来源: 慕课网 Spark SQL慕课网日志分析_大数据实战 目标: spark系列软件的伪分布式的安装.配置.编译 spark的使用 系统: mac 10.13.3 /ubuntu 16.06,两个系统都测试过 软件: hadoop,hive,spark,scala,maven hadoop伪分布式.spark伪分布式 详细: software 存放安装的软件包 app 所有软件的安装目录 data 课程中所有使用的测试数据目录 source 软件源码目录,spark 1)下载hadoop a…
继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的代码比较简单,它只有一个main函数,同时,和AppClient一样,它也有一个ClientEndpoint,只是两者的用途不一样. 1.Client Client中唯一的main方法如下: def main(args: Array[String]) { if (!sys.props.contain…
继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法,receive方法中消息类型主要分为以下12种情况: (1)重新选择了新Leader,进行数据的恢复 (2)恢复完毕,重新创建Driver,完成资源的重新分配 (3)触发Leadership的选举 (4)Master注册新的Worker (5)Master注册新的App,然后重新分配资源 (6)Ex…
Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属性) 1.设置一个守护单线程的消息发送器, private val forwardMessageThread = ThreadUtils.newDaemonSingleThreadScheduledExecutor("master-forward-message-thread") 2.根据…
继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, receive方法主要分为以下14种情况: (1)worker向master注册成功后,详见代码 (2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略,详见代码 (3)worker的工作空间的清理,详见代码 (4)更换master,详见代码 (5)worker注…
本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继续分析TaskScheduler和SchedulerBackend. 一.TaskScheduler和SchedulerBackend类结构和继承关系 之所以把这部分放在最前面,是想让大家在阅读后续文章时对TaskScheduler和SchedulerBackend是什么有一个概念.因为有些方法是从…
本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Action操作之前一系列Transform操作的关联关系,生成一个DAG,在后续的操作中,对DAG进行Stage划分,生成Task并最终运行.整个过程如下图所示,DAGScheduler用于对Application进行分析,然后根据各RDD之间的依赖关系划分Stage,根据这些划分好的Stage,对应…
本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提供 API来像Spark一样进行批处理,但两者处理的基础是完全不同的.Flink把批处理当作流处理中的一种特殊情况.在Flink中,所有 的数据都看作流,是一种很好的抽象,因为这更接近于现实世界. 1.1 基本架构 下面我们介绍下Flink的基本架构,Flink系统的架构与Spark类似,是一个基于…
Spark RPC系列: Spark RPC框架源码分析(一)运行时序 Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(三)运行时序 一. Spark rpc框架概述 Spark是最近几年已经算是最为成功的大数据计算框架,那么这次我们就来介绍它内部的一个小点,Spark RPC框架. 在介绍之前,我们需要先说明什么是RPC,引用百度百科: RPC(Remote Procedure Call)-远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层…
前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Reactor模型以及一些常用的类.这一篇我们还是用上一篇的例子,从代码的角度讲述Spark RPC的运行时序,从而揭露Spark RPC框架的运行原理.我们主要将分成两部分来讲,分别从服务端的角度和客户端的角度深度解析. 不过源码解析部分都是比较枯燥的,Spark RPC这里也是一样,其中很多东西都是…
一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(一)简述 这一节我们来看看一个Spark RPC中的运用实例--Spark的心跳机制.当然这次主要还是从代码的角度来看. 我们首先要知道Spark的心跳有什么用.心跳是分布式技术的基础,我们知道在Spark中,是有一个Master和众多的Worker,那么Master怎么知道每…
记录学习<Hadoop+Spark大数据巨量分析与机器学习整合开发>这本书. 第五章 Hadoop Multi Node Cluster windows利用虚拟机实现模拟多节点集群构建 5.2-5.3 设置VirtualBox网卡,设置data1服务器 1. 设置网卡 网卡1设为网络地址转换(NAT) 网卡2设为仅主机(Host-Only)适配器 2. 编辑网络配置文件设置固定IP sudo gedit /etc/network/interfaces # NAT interface auto…
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
spark快速上手 前言 基于Spark 2.1版本 仅仅是快速上手,没有深究细节 主要参考是官方文档 代码均为官方文档中代码,语言为Scala 进入spark-shell 终端输入spark-shell,进入的是Scala环境的终端,也可以输入pyspark进入Python环境的终端 创建一个SparkSession import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("Sp…
本文由  网易云发布. 本文内容接上一篇Apache 流框架 Flink,Spark Streaming,Storm对比分析(一) 2.Spark Streaming架构及特性分析 2.1 基本架构 基于是spark core的spark streaming架构. Spark Streaming是将流式计算分解成一系列短小的批处理作业.这里的批处理引擎是Spark,也就是把Spark Streaming的输入数 据按照batch size(如1秒)分成一段一段的数据(Discretized St…
此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 2.Spark Streaming架构及特性分析 2.1 基本架构 基于是spark core的spark streaming架构. Spark Streaming是将流式计算分解成一系列短小的批处理作业.这里的批处理引擎是Spark,也就是把Spark Streaming的输入数据按照batch size(如1秒)分成一段一段的数据(Discretized Stream),每一段数据都转换成Spark中的…
Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以Standalone方式部署在单个机器上面.运行Spark的方式有interactive和submit方式.本文中所有的操作都是以interactive方式操作以Standalone方式部署的Spark.具体的部署方式,请参考Hadoop Ecosystem. HDFS是一个分布式的文件管理系统,其…
Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以Standalone方式部署在单个机器上面.运行Spark的方式有interactive和submit方式.本文中所有的操作都是以interactive方式操作以Standalone方式部署的Spark.具体的部署方式,请参考Hadoop Ecosystem. Alluxio是基于内存的分布式文件管…
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classification Example. """ from __future__ import print_function from pyspark import SparkContext from pyspark.mllib.tree import DecisionTree, Decisi…
数据准备 数据下载:美国宇航局肯尼迪航天中心WEB日志 我们先来看看数据:首先将日志加载到RDD,并显示出前20行(默认). import sys import os log_file_path ='apache.access.log.PROJECT' base_df = sqlContext.read.text(log_file_path) base_df.show(truncate=False) 数据框输出如下: +--------------------------------------…
Spark 1.6+推出了以RPCEnv.RPCEndpoint.RPCEndpointRef为核心的新型架构下的RPC通信方式.其具体实现有Akka和Netty两种方式,Akka是基于Scala的Actor的分布式消息通信系统,Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客户端程序. Rpc Environment(RpcEnv)是一个RpcEndpoints用于处理消息的环境,它管理着整…
从WordCount開始分析 编写一个样例程序 编写一个从HDFS中读取并计算wordcount的样例程序: packageorg.apache.spark.examples importorg.apache.spark.SparkContext importorg.apache.spark.SparkContext._ objectWordCount{ defmain(args : Array[String]) { valsc = ),"wordcount by hdfs", Sys…
Spark任务调度 TaskScheduler调度入口: (1)       CoarseGrainedSchedulerBackend 在启动时会创建DriverEndPoint. 而DriverEndPoint中存在一定时任务,每隔一定时间(spark.scheduler.revive.interval, 默认为1s)进行一次调度(给自身发送ReviveOffers消息, 进行调用makeOffers进行调度).代码如下所示 override def onStart() { // Perio…
在spark mllib 1.1加入版本stat包,其中包括一些统计数据有关的功能.本文分析中卡方检验和实施的主要原则: 一个.根本 在stat包实现Pierxunka方检验,它包括以下类别 (1)适配度检验(Goodness of Fit test):验证一组观察值的次数分配是否异于理论上的分配. (2)独立性检验(independence test) :验证从两个变量抽出的配对观察值组是否互相独立(比如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关) 计算公式: 当中O表示观測值…
非交互式运行Spark Application 的例子 $ cat Count.py import sys from pyspark import SparkContext if __name__ == "__main__": sc = SparkContext() logfile = sys.argv[1] count = sc.textFile(logfile).filter(lambda line: '.jpg' in line).count() print "JPG…
概述     Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂.    在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段通过shuffle读取数据并输出到对应的Reduce:而Reduce阶段负责从Map端拉取数据并进行计算.在整个shuffle过程中,往往伴随着大量的磁盘和网络I/O.所以shuffle性能的高低也直接决定了整个程序的性能高低.Spark也会有自己的shuffle实现过程.   spark中的shu…
本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计,它可以做流量分析.来源分析.网站分析.转化分析.另外还有特定场景分析,比如安全分析,用来识别 CC 攻击. SQL 注入分析.脱库等.这里我们简单实现一个类似于百度分析的系统. 代码见 https://github.com/libaoquan95/WebLogAnalyse 1.模拟生成 web log 记录…
这篇文章会详细介绍,Sort Based Shuffle Write 阶段是如何进行落磁盘的 流程分析 入口处: org.apache.spark.scheduler.ShuffleMapTask.runTask runTask对应的代码为: val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any]( dep.shuffleHandle, partitionId, context) writer.…