kereas 实现鸢尾花分类】的更多相关文章

import tensorflow as tf from sklearn import datasets import numpy as np x_train=datasets.load_iris().data y_train=datasets.load_iris().target np.random.seed(116) np.random.shuffle(x_train) np.random.seed(116) np.random.shuffle(y_train) tf.random.set_…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 鸢尾花分类 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .txt 文件 鸢尾花分类 多类分类 Sdca Multi-class…
半年前用numpy写了个鸢尾花分类200行..每一步计算都是手写的  python构建bp神经网络_鸢尾花分类 现在用pytorch简单写一遍,pytorch语法解释请看上一篇pytorch搭建简单网络 import pandas as pd import torch.nn as nn import torch class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.fc = nn.Sequen…
看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理解和工程实践能力的提升,也不利于Python初学者实现该模型. 本博文的特点: 一 全面性地总结K-NN模型的特征.用途 二  基于Python的内置模块,不调用任何第三方库实现 博文主要分为四部分: 基本模型(便于理清概念.回顾模型) 对待解决问题的重述 模型(算法)和评价(一来,以便了解模型特点…
目录 Logistic回归(鸢尾花分类) 一.导入模块 二.获取数据 三.构建决策边界 四.训练模型 4.1 C参数与权重系数的关系 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ Logistic回归(鸢尾花分类) 一.导入模块 import numpy as np import matplotlib.pyplot as plt from matplot…
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ k近邻算法(鸢尾花分类) 一.导入模块 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from matplotlib.font_manager import Fon…
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ kd树(鸢尾花分类) 一.导入模块 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from matplotlib.font_manager import FontP…
目录 AdaBoost算法代码(鸢尾花分类) 一.导入模块 二.导入数据 三.构造决策边界 四.训练模型 4.1 训练模型(n_e=10, l_r=0.8) 4.2 可视化 4.3 训练模型(n_estimators=300, learning_rate=0.8) 4.4 训练模型(n_estimators=300, learning_rate=0.5) 4.5 训练模型(n_estimators=600, learning_rate=0.7) 更新.更全的<机器学习>的更新网站,更有pyth…
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 本文是<DL4J>实战的第二篇,前面做好了准备工作,接下来进入正式实战,本篇内容是经典的入门例子:鸢尾花分类 下图是一朵鸢尾花,我们可以测量到它的四个特征:花瓣(petal)的宽和高,花萼(sepal)的 宽和高: 鸢尾花有三种:Setosa.Versicolor.Virginic…
1.问题简述 假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣.她收集了每朵鸢尾花的一些测量数据: 花瓣的长度和宽度以及花萼的长度和宽度,所有测量结果的单位都是厘米. 她还有一些鸢尾花的测量数据,这些花之前已经被植物学专家鉴定为属于 setosa.versicolor 或 virginica 三个品种之一.对于这些测量数据,她可以确定每朵鸢尾花所属的品种. 我们假设这位植物学爱好者在野外只会遇到这三种鸢尾花.我们的目标是构建一个机器学习模型,可以从这些已知品种的鸢尾花测量数据中进行学习,从而…
决策树算法 决策树算法主要有ID3, C4.5, CART这三种. ID3算法从树的根节点开始,总是选择信息增益最大的特征,对此特征施加判断条件建立子节点,递归进行,直到信息增益很小或者没有特征时结束. 信息增益:特征 A 对于某一训练集 D 的信息增益 \(g(D, A)\) 定义为集合 D 的熵 \(H(D)\) 与特征 A 在给定条件下 D 的熵 \(H(D/A)\) 之差. 熵(Entropy)是表示随机变量不确定性的度量. \[ g(D, A) = H(D) - H(D \mid A)…
IDE:jupyter   数据集请查看:鸢尾花数据集 测试效果预览   成功率96.7% 代码已上传到码云…
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors…
#coding:utf-8 from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifierimport numpy as npimport matplotlib.pyplot as plt iris_dataset = load_iris() # 获取数据# print("keys…
IDE:jupyter 目前我知道的数据集来源有两个,一个是csv数据集文件另一个是从sklearn.datasets导入 1.1 csv格式的数据集(下载地址已上传到博客园----数据集.rar)   1.2  数据集读取 file = "flower.csv" import pandas as pd df = pd.read_csv(file, header=None) df.head(10) 1.3结果  2.1  sklearn中的数据集 from sklearn.datase…
本人人工智能初学者,现在在学习TensorFlow2.0,对一些学习内容做一下笔记.笔记中,有些内容理解可能较为肤浅.有偏差等,各位在阅读时如有发现问题,请评论或者邮箱(右侧边栏有邮箱地址)提醒. 若有小伙伴需要笔记的可复制的html或ipynb格式文件,请评论区留下你们的邮箱,或者邮箱(右侧边栏有邮箱地址)联系本人.…
. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法. 概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p)与自变量之  间存在线性相关的关系,逻辑回归模型定义如下: #Sigmoid曲线: import matplotlib.pyplot as plt import numpy as np def Sigmoid(x): re…
//看了多少遍SVM的数学原理讲解,就是不懂,对偶形式推导也是不懂,看来我真的是不太适合学数学啊,这是面试前最后一次认真的看,并且使用了sklearn包中的SVM来进行实现了一个鸢尾花分类的实例,进行进一步的理解. 1.鸢尾花分类实例 转自:https://www.cnblogs.com/luyaoblog/p/6775342.html 数据集: 特点:每个属性及标记之间使用逗号进行隔开. #encoding:utf-8 from sklearn import svm import numpy…
一个朋友让帮忙做图像分类,用FCM聚类算法,网上查了一下,FCM基本都是对一幅图像进行像素的分类,跟他说的任务不太一样,所要做的是将一个文件夹里的一千多幅图像进行分类.图像大概是这个样子的(是25*25的小图像): 自己写太麻烦,我花了些时间在GitHub上找了FCM的算法,有一个比较合适的算法,链接如下:https://github.com/HosseinAbedi/FCM ,这个代码本来是用FCM处理鸢尾花分类的,输入是鸢尾花的四个特征,输出是三个预测类别.因为图像就是矩阵,矩阵也是多维向量…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
传统机器学习的回顾 近年来,深度学习的概念十分火热,人工智能也由于这一技术的兴起,在近几年吸引了越来越多的关注.我们这里,将结合一些基本的用例,简要的介绍一下这一新的技术. 我们首先需要明确人工智能.机器学习以及深度学习三者之间的关系.如NVIDIA官网所述,人工智能是一个非常大的概念,而机器学习只是人工智能的一种实现方法.深度学习是同样也是一种实现机器学习的方法,是在机器学习的基础上建立起来的.这体现在,首先从字面上看,二者都是在"学习",因此在评价深度学习训练出的模型好坏时,同样直…
python 与 R 是当今数据分析的两大主流语言.作为一个统计系的学生,我最早接触的是R,后来才接触的python.python是通用编程语言,科学计算.数据分析是其重要的组成部分,但并非全部:而R则更偏重于统计分析,毕竟R是统计学家发明的,本身就是为统计而生.python的优势在于其全能性,几乎所有的领域都有python的身影,而R则在统计及其相关领域非常专业.二者各有优势.那么这么好的两个东西,能不能结合到一起呢?答案是肯定的.要想实现这种功能,一般必须要提供相应的调用接口.rpy2这个第…
前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此模型之上调用测试数据集进行分类测试:4. 查看分类结果:5. 进行各种参数的调试并重复2-4直至分类的结果让人满意为止. 参数调整策略 综合来说,主要有以下四个方面需要调整: 1. 选择合适的核函数:2. 调整误分点容忍度参数cost:3. 调整各核函数的参数:4. 调整各样本的权重. 其中,对于特…
官网地址:https://www.tensorflow.org/versions/r1.1/get_started/tflearn 1.代码例子 实现自定义的Estimator 使用DNNClassifier解决鸢尾花分类问题 使用FtrlOptimizer优化器 使用随机森林解决鸢尾花分类问题 使用深宽网络 实现自定义的Estimator和指数衰减…
本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决条件 在本文档中使用示例代码之前,您需要执行以下操作: 确认安装了Tensorflow 如果在Anaconda的虚拟环境下安装了TF,激活你的TF环境 通过以下命令安装或者升级pandas pip install pandas ​ 获取示例代码 按照以下步骤获取我们将要全程使用的示例代码 通过输入以…
介绍 一提到机器学习,总是让人望而生畏.幸运的是,Azure正在想方设法让开发人员更容易进入机器学习.ML.NET是Microsoft Research专为.NET开发人员开发的机器学习框架,因此您可以在Visual Studio中完成所有工作.如果你还没有玩过它,我想你会爱上它.当您准备好部署ML.NET算法时,您可以通过Azure Function使用无服务器架构- 而不必担心运行时会把服务器和容器弄得一团糟. 无服务器机器学习 受到Luis Quintanilla的文章启发,有关ML.NE…
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow. 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型. 前言,对两分类和多分类的概念描述 (前言是整理别人博客的笔记https://blog.csdn.net/qq_22238533/article/details/77774223) 1,在LR(逻辑回归)中,如何进行多分类? 一般情…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn ML.NET 示例 ML.NET 是一个跨平台的开源机器学习框架,使.NET开发人员使用机器学习变得很容易.在这个GitHub 存储库中,我们提供了示例,这些示例将帮助您开始使用ML.NET,以及如何将ML.NET加入到现有…
忙了许久,总算是又想起这边还没写完呢. 那今天就写写sklearn库的一部分简单内容吧,包括数据集调用,聚类,轮廓系数等等.   自带数据集API 数据集函数 中文翻译 任务类型 数据规模 load_boston Boston房屋价格 回归 506*13 fetch_california_housing 加州住房 回归 20640*9 load_diabetes 糖尿病 回归 442*10 load_digits 手写字 分类 1797*64 load_breast_cancer 乳腺癌 分类.…
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将…