内容导入: 聚类是无监督学习的典型例子,聚类也能为企业运营中也发挥者巨大的作用,比如我们可以利用聚类对目标用户进行群体分类,把目标群体划分成几个具有明显特征区别的细分群体,从而可以在运营活动中为这些细分群体采取精细化.个性化的运营和服务:还可以利用聚类对产品进行分类,把企业的产品体系进一步细分成具有不同价值.不同目的的多维度的产品组合,在此基础分别制定和相应的开发计划.运营计划和服务规划.这都将提升运营的效率和商业效果. 聚类方法分为基于划分的聚类.基于层次的聚类.基于密度的聚类.基于网络的聚类…
[转]http://www.aboutyun.com/thread-18178-1-1.html 问题导读:1.如何理解K-Means算法?2.如何寻找K值及初始质心?3.如何应用K-Means算法处理数据? K-Means是聚类算法中的一种,其中K表示类别数,Means表示均值.顾名思义K-Means是一种通过均值对数据点进行聚类的算法.K-Means算法通过预先设定的K值及每个类别的初始质心对相似的数据点进行划分.并通过划分后的均值迭代优化获得最优的聚类结果. K值及初始质心 K值是聚类结果…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
k-means 聚类算法原理: 1.从包含多个数据点的数据集 D 中随机取 k 个点,作为 k 个簇的各自的中心. 2.分别计算剩下的点到 k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇.两个点之间的相异度大小采用欧氏距离公式衡量,对于两个点 T0(x1,y2)和 T1(x2,y2),T0 和 T1 之间的欧氏距离为: 欧氏距离越小,说明相异度越小 3.根据聚类结果,重新计算 k 个簇各自的中心,计算方法是取簇中所有点各自维度的算术平均数. 4.将 D 中全部点按照新的中心重新聚类.…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚类算法流程 3.1 输入 3.2 输出 3.3 流程 四.K-Means初始化优化之K-Means++ 五.K-Means距离计算优化之elkan K-Means 六.大数据优化之Mini Batch K-Means 七.K-Means聚类算法优缺点 7.1 优点 7.2 缺点 八.小结 更新.更全…
在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类.重点讲述如何选择合适的k值. 1. K-Means类概述 在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans.另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatchKMeans.一般来说,使用K-Means的算法调参是比较简单的. 用KMeans类的话,一般要注意的…
HTML零基础学习Web前端网页制作,首先是要掌握一些常用标签的使用和他们的各个属性,常用的标签我总结了一下有以下这些: html:页面的根元素. head:页面的头部标签,是所有头部元素的容器. body:页面的主体标签,页面展现的内容就放置在这里面. script:脚本标签,可以把js脚本代码放置在这个标签内,也可以使用这个标签的src属性引入一个外部标签. title:页面的标题.我们有一个HTML的学习交流群,搜索四八七中间是一七一最后是839,平时提供大家一起学习HTML,每天有免费H…