Flink+Kafka整合的实例】的更多相关文章

Flink+Kafka整合实例 1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01. 2.我的pom.xml文件配置如下. <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSch…
本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案的实现者. 原文地址是https://data-artisans.com/blog/end-to-end-exactly-once-processing-apache-flink-apache-kafka 2017年12月Apache Flink社区发布了1.4版本.该版本正式引入了一个里程碑式的功能:两阶段提交Sink,即TwoPhaseCommitSinkFunction.该SinkFunctio…
转载自 huxihx,原文链接 [译]Flink + Kafka 0.11端到端精确一次处理语义的实现 本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案的实现者. 原文地址是An Overview of End-to-End Exactly-Once Processing in Apache Flink® (with Apache Kafka, too!). 目录 一.Flink应用的EOS二.Flink实现EOS应用三.Flink中实现两阶段提交…
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义.在具体的实现过程中,Flink不依赖于Kafka内置的消费组位移管理,而是在内部自行记录和维护consumer的位移. 用户在使用时需要根据Kafka版本来选择相应的connector,如下表所示: Maven依…
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义.在具体的实现过程中,Flink不依赖于Kafka内置的消费组位移管理,而是在内部自行记录和维护consumer的位移. 用户在使用时需要根据Kafka版本来选择相应的connector,如下表所示: Maven依赖 支持的最低Flink版本 Kafka客户端类名 说明 flink-connector…
1.使用IDEA新建工程,创建工程 springboot-kafka-producer 工程pom.xml文件添加如下依赖: <!-- 添加 kafka 依赖 --> <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency> <!-- 添加 gson 依赖…
flume与kafka整合 前提: flume安装和测试通过,可参考:http://www.cnblogs.com/rwxwsblog/p/5800300.html kafka安装和测试通过,可参考:http://www.cnblogs.com/rwxwsblog/p/5800224.html 在上诉条件满足的情况下才能进行flume和kafka的整合. flume与kafka整合 修改/usr/local/flume/conf/flume-conf.properties agent.sinks…
本博文的主要内容有 .kafka整合storm   .storm-kafka工程  .storm + kafka的具体应用场景有哪些? 要想kafka整合storm,则必须要把这个storm-kafka-0.9.2-incubating.jar,放到工程里去. 无非,就是storm要去拿kafka里的东西, storm-kafka工程 我们自己,在storm-kafka工程里,写, KafkaTopo.java. WordSpliter.java.WriterBolt.java. 这里,把话题w…
在上一篇<Kafka Consumer多线程实例>中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程.在第二种用法中我使用的是自动提交的方式,省去了多线程提交位移的麻烦.很多人跑来问如果是手动提交应该怎么写?由于KafkaConsumer不是线程安全的,因此我们不能简单地在多个线程中直接调用consumer.commitSync来提交位移.本文将给出一个实际的例子来模拟多线程消费以及手动提交位移. 本例中包含3个类:…
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据. 然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WA…