spark (四) RDD概念】的更多相关文章

一.实验目的 (1)熟悉 Spark 的 RDD 基本操作及键值对操作: (2)熟悉使用 RDD 编程解决实际具体问题的方法. 二.实验平台 操作系统:centos6.4 Spark 版本:1.5.0 三.实验内容 实验一: 1.spark-shell 交互式编程 请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含 了某大学计算机系的成绩,数据格式如下所示: 首先开始我们的第一步,打开linux系统中的终端. 请根据给定的实验数据,在 spark-…
本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用.     为什么选择Spark     原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来.Scala基本上可以无缝集成java及其相关库.最重要的是,可以封装组件,沉淀工作,提高工作效率…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
一.RDD概念与特性 1. RDD的概念 RDD(Resilient Distributed Dataset),是指弹性分布式数据集.数据集:Spark中的编程是基于RDD的,将原始数据加载到内存变成RDD,RDD再经过若干次转化,仍为RDD.分布式:读数据一般都是从分布式系统中去读,如hdfs.kafka等,所以原始文件存在磁盘是分布式的,spark加载完数据的RDD也是分布式的,换句话说RDD是抽象的概念,实际数据仍在分布式文件系统中:因为有了RDD,在开发代码过程会非常方便,只需要将原始数…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 一. Spark核心概念 Master,也就是架构图中的Cluster Manager.Spark的Master和Workder节点分别Hadoop的NameNode和DataNode相似,是一种主从结构.Master是集群的领导者,负责协调和管理集群内的所有资源(接收调度和向WorkerNode发送指令).从大类上来分Master分为local和cluster两大类 local:也就是本地模式,所有计算都在一台服务器上完成,通常用…
Spark Streaming核心概念与编程 1. 核心概念 StreamingContext Create StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) //Second(1) #表示处理的批次, 当前1秒处理一次 val ssc = new Stream…
弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的.RDD是一个容错的.可以被并行操作的元素集合.创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合:从外部存储系统中引用一个数据集.RDD的一大特性是分布式存储,分布式存储在最大的好处是可以让数据在不同工作节点并行存储,以便在需要数据时并行运算.弹性指其在节点存储时,既可以使用内存,也可已使用外存,为使用者进行大数据处理提供方便.除此之外,RDD的另一大特性是延迟计算,即一个完整的RDD运行任务被分为两部分:Tran…