Kafka数据辅助和Failover】的更多相关文章

数据辅助与Failover CAP理论(它具有一致性.可用性.分区容忍性) CAP理论:分布式系统中,一致性.可用性.分区容忍性最多只可同时满足两个.一般分区容忍性都要求有保障,因此很多时候在可用性与一致性之间做权衡. 一致性方案 1.Master-slave >RDBMS的读写分离即为典型的Master-slave方案 >同步复制可保证强一致性但会影响可用性(等master确保将数据复制给全部的slave,slave才返回结果) >异步复制可提供高可用性但会降低一致性 2.WNR &g…
k CAP帽子理论. consistency:一致性 Availability:可用性 partition tolerance:分区容忍型 CA :mysql oracle(抛弃了网络分区) CP:hbase redis mongodb(抛弃了可用性) AP:cassandra simpleDB(抛弃了强一致性,采用弱一致性或者最终一致性,不定时一致性) 一致性的方案 master-slave(hadoop) WNR 读取后还得判断哪个数据是最新的.常用做法(版本号或者时间戳) 平时读取数据是从…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 找时间记录一下利用Gobblin采集kafka数据的过程,话不多说,进入正题 一.Gobblin环境变量准备 需要配置好Gobblin0.7.0工作时对应的环境变量,可以去Gobblin的bin目录的gobblin-env.sh配置,比如 export GOBBLIN_JOB_CONFIG_DIR=~/gobblin/gobblin-config-dir export GOBBLIN_WORK…
本文将展示 1.如何使用spark-streaming接入TCP数据并进行过滤: 2.如何使用spark-streaming接入TCP数据并进行wordcount: 内容如下: 1.使用maven,先解决pom依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
转载自:https://blog.csdn.net/weixin_41615494/article/details/7952173 一.基于Receiver的方式 原理 Receiver从Kafka中获取的数据存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据,如果突然数据暴增,大量batch堆积,很容易出现内存溢出的问题. 在默认的配置下,这种方式可能会因为底层失败而丢失数据.如果要让数据零丢失,就必须启用Spark Streaming的…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712([点我])(https://yq.aliyun.com/articles/60712), 不过这篇文章使用的spark貌似是spark1.x的.我这里主要是改为了spark2.x的方式 kafka生产数据 闲话少叙,直接上代码: import java.util.{Properties, UUID…
本文介绍flume读取kafka数据的方法 代码: /*******************************************************************************  * Licensed to the Apache Software Foundation (ASF) under one  * or more contributor license agreements.  See the NOTICE file  * distributed wi…
直接贴面试题: 怎么保证数据 kafka 里的数据安全? 答: 生产者数据的不丢失kafka 的 ack 机制: 在 kafka 发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常的能够被收到. 如果是同步模式:ack 机制能够保证数据的不丢失,如果 ack 设置为 0,风险很大,一般不建议设置为 0 如果是异步模式:通过 buffer 来进行控制数据的发送,有两个值来进行控制,时间阈值与消息的数量阈值,如果 buffer 满了数据还没有发送出去,如果设置的是立即清理模式,风险很大…
一.需求 需要做实时数据接入的接口.数据最终要写入库,要做到高并发,数据的完整,不丢失数据. 二.技术选型 1.因为只是做简单的接口,不需要复杂功能,所以决定用flask这个简单的python框架(因为做运维的作者只会python所以只能在python框架里找): 2.要做到数据的实时性,考虑到数据落地入库可能io会延时比较大,所以决定数据通过接口先写入消息队列中间件kafka (为什么用kafka因为kafka数据是顺序写文件,效率还可以,主要是的写入文件可以保证自定义时间内的数据不丢失:ka…
1.KafkaUtils.createDstream 构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] ) 使用了receivers来接收数据,利用的是Kafka高层次的消费者api,对于所有的receivers接收到的数据将会保存在spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,该日志存储在HDF…
简单理解为:Receiver方式是通过zookeeper来连接kafka队列,Direct方式是直接连接到kafka的节点上获取数据 Receiver 使用Kafka的高层次Consumer API来实现.receiver从Kafka中获取的数据都存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据.然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写…
摘要:本次分享主要介绍Kafka产品的原理和使用方式,以及同步数据到MaxCompute的参数介绍.独享集成资源组与自定义资源组的使用背景和配置方式.Kafka同步数据到MaxCompute的开发到生产的整体部署操作等内容. 演讲嘉宾简介:耿江涛,阿里云智能技术支持工程师 以下内容根据演讲视频以及PPT整理而成. 本次分享主要围绕以下两个方面: 一.背景介绍二.具体操作流程1.Kafka消息队列使用以及原理2.资源组介绍以及配置3.同步过程及其注意事项 4.开发测试以及生产部署 一.背景介绍 1…
简介: Spark-Streaming获取kafka数据的两种方式-Receiver与Direct的方式,可以简单理解成: Receiver方式是通过zookeeper来连接kafka队列, Direct方式是直接连接到kafka的节点上获取数据了. 一.基于Receiver的方式 这种方式使用Receiver来获取数据.Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,然后Spar…
摘要: 本文向您详细介绍如何使用DataWorks数据同步功能,将Kafka集群上的数据迁移到阿里云MaxCompute大数据计算服务. 前提条件 搭建Kafka集群 进行数据迁移前,您需要保证自己的Kafka集群环境正常.本文使用阿里云EMR服务自动化搭建Kafka集群,详细过程请参见:Kafka 快速入门. 本文使用的EMR Kafka版本信息如下:EMR版本: EMR-3.12.1集群类型: Kafka软件信息: Ganglia 3.7.2 ZooKeeper 3.4.12 Kafka 2…
1.概述 最近有同学留言咨询Kafka数据落地到Hive的一些问题,今天笔者将为大家来介绍一种除Flink流批一体以外的方式(流批一体下次再单独写一篇给大家分享). 2.内容 首先,我们简单来描述一下数据场景,比如有这样一个数据场景,有一批实时流数据实时写入Kafka,然后需要对Topic中的数据进行每隔5分钟进行落地到Hive,进行每5分钟分区存储.流程图如下所示: 2.1 环境依赖 整个流程,需要依赖的组件有Kafka.Flink.Hadoop.由于Flink提交需要依赖Hadoop的计算资…
简单理解为:Receiver方式是通过zookeeper来连接kafka队列,Direct方式是直接连接到kafka的节点上获取数据 一.Receiver方式: 使用kafka的高层次Consumer api来实现的,Receiver从kafka中获取的数据都是存储在spark executor的内存中,然后Spark Streaming启动的job会去处理那些数据.然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可用机制,让数据零丢失,就必须启用Spark Strea…
SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量 1. ScalikeJDBC 2.配置文件 3.导入依赖的jar包 4.源码测试 通过MySQL保存kafka的偏移量,完成直连方式读取数据 使用scalikeJDBC,访问数据库. 1. ScalikeJDBC ScalikeJDBC 是一款Scala 开发者使用的简洁 DB 访问类库,它是基于 SQL 的,使用者只需要关注 SQL 逻辑的编写,所有的数据库操作都交给 ScalikeJDBC.这个类库内置包含了J…
SparkStreaming接收Kafka数据的两种方式 SparkStreaming接收数据原理 一.SparkStreaming + Kafka Receiver模式 二.SparkStreaming + Kafka Direct模式 三.Direct模式与Receiver模式比较 SparkStreaming2.3+kafka 改变 四.SparkStreaming+Kafka维护消费者offset 五.实例:SparkStreaming集成Kafka,读取Kafka中数据,进行数据统计计…
Kafka 作为 high throughput 的消息中间件,以其性能,简单和稳定性,成为当前实时流处理框架中的主流的基础组件. 当然在使用 Kafka 中也碰到不少问题,尤其是 failover 的问题,常常给大家带来不少困扰和麻烦. 所以在梳理完 kafka 源码的基础上,尽量用通俗易懂的方式,把 Kafka 发生 failover 时的机制解释清楚,让大家在使用和运维中,做到心中有数. 如果对 kafka 不了解的,可以先参考https://kafka.apache.org/08/des…
转自:http://www.cnblogs.com/fxjwind/p/4972244.html Kafka 作为 high throughput 的消息中间件,以其性能,简单和稳定性,成为当前实时流处理框架中的主流的基础组件. 当然在使用 Kafka 中也碰到不少问题,尤其是 failover 的问题,常常给大家带来不少困扰和麻烦. 所以在梳理完 kafka 源码的基础上,尽量用通俗易懂的方式,把 Kafka 发生 failover 时的机制解释清楚,让大家在使用和运维中,做到心中有数. 如果…
在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订单收益 2)然后,spark-streaming每十秒实时去消费kafka中的订单数据,并以订单类型分组统计收益 3)最后,spark-streaming统计结果实时的存入本地MySQL. 前提条件 安装 1)spark:我使用的yarn-client模式下的spark,环境中集群客户端已经搞定 2…
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 作者:mikealzhou 本文重点介绍kafka的两类常见数据迁移方式:1.broker内部不同数据盘之间的分区数据迁移:2.不同broker之间的分区数据迁移. 一.broker 内部不同数据盘之间进行分区数据迁移 1.1 背景介绍 最近,腾讯云的一个重要客户发现kafka broker内部的topic分区数据存储分布不均匀,导致部分磁盘100%耗尽,而部分磁盘只有40%的消耗量. 分析原因,发现存在部分topic的分区数据过于集中在某…
1.概述 Kafka的使用场景非常广泛,一些实时流数据业务场景,均依赖Kafka来做数据分流.而在分布式应用场景中,数据迁移是一个比较常见的问题.关于Kafka集群数据如何迁移,今天笔者将为大家详细介绍. 2.内容 本篇博客为大家介绍两种迁移场景,分别是同集群数据迁移.跨集群数据迁移.如下图所示: 2.1 同集群迁移 同集群之间数据迁移,比如在已有的集群中新增了一个Broker节点,此时需要将原来集群中已有的Topic的数据迁移部分到新的集群中,缓解集群压力. 将新的节点添加到Kafka集群很简…
1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBase等.如果不想使用Kafka API编写代码去消费Kafka Topic,也是有组件可以去集成消费的.下面笔者将为大家介绍如何使用Flume快速消费Kafka Topic数据,然后将消费后的数据转发到HDFS上. 2.内容 在实现这套方案之间,可以先来看看整个数据的流向,如下图所示: 业务数据实时…
“严格的顺序消费”有多么困难 下面就从3个方面来分析一下,对于一个消息中间件来说,”严格的顺序消费”有多么困难,或者说不可能. 发送端 发送端不能异步发送,异步发送在发送失败的情况下,就没办法保证消息顺序. 比如你连续发了1,2,3. 过了一会,返回结果1失败,2, 3成功.你把1再重新发送1遍,这个时候顺序就乱掉了. 存储端 对于存储端,要保证消息顺序,会有以下几个问题: (1)消息不能分区.也就是1个topic,只能有1个队列.在Kafka中,它叫做partition:在RocketMQ中,…
强大的功能,丰富的插件,让logstash在数据处理的行列中出类拔萃 通常日志数据除了要入ES提供实时展示和简单统计外,还需要写入大数据集群来提供更为深入的逻辑处理,前边几篇ELK的文章介绍过利用logstash将kafka的数据写入到elasticsearch集群,这篇文章将会介绍如何通过logstash将数据写入HDFS 本文所有演示均基于logstash 6.6.2版本 数据收集 logstash默认不支持数据直接写入HDFS,官方推荐的output插件是webhdfs,webhdfs使用…
数据存储结构: Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互独立的.每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定的),每个partition存储一部分Message. partition是以文件的形式存储在文件系统中,比如,创建了一个名为page_visits的topic,其有5个partition,那么在Kafka的数据目录中(由配置文件中的log.dirs指定的)中就有这样5个目…
再说复制Kafka 的复制机制和分区的多副本架构是Kafka 可靠性保证的核心.把消息写入多个副本可以使Kafka 在发生崩愤时仍能保证消息的持久性. Kafka 的主题被分为多个分区,分区是基本的数据块.分区存储在单个磁盘上,Kafka 可以保证分区里的事件是有序的,分区可以在线(可用),也可以离线(不可用) .每个分区可以有多个副本,其中一个副本是首领.所有的事件都直接发送给首领副本,或者直接从首领副本读取事件.其他副本只需要与首领保持同步,并及时复制最新的事件.当首领副本不可用时,其中一个…