RANSAC和Flitline】的更多相关文章

[blog算法原理]RANSAC和FitLine ​ 如果已经有一系列图片,需要拟合出最为合适的一条直线出来,这个时候你会选择RANSAC还是FitLine. 一.算法定义: RANSAC是实际运用非常广泛的算法,它的数学表示为 "Ransac 是解决这类问题的代表性算法.它是一种随机算法,步骤如下: 输入:k,n,t,d,model,dataBestModel = null;迭代k次——(1) 从data中随机取出n个点,用这n个点去拟合model和模型的model,将得到的带参数的model…
最近在做平面拟合,待处理的数据中有部分噪点需要去除,很多论文中提到可以使用Ransac方法来去除噪点. 之前在做图像配准时,用到了Ransac算法,但是没有去仔细研究,现在好好研究一番. 参考: http://download.csdn.net/detail/tuoxie2046/6012333#comment http://grunt1223.iteye.com/blog/961063 http://www.cnblogs.com/tiandsp/archive/2013/06/03/3115…
随机抽样一致,这个算法,我以前一直都没有理解透彻.只知道可以用来直线拟合,网上大多数中文博客也都是写直线拟合的,但是用来匹配二维特征的时候,总还是没弄明白. 基本概念参考 http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html 写得已经够清楚了. 现在我来说说它在匹配特征时候的应用. -------------------------------------------- 假如我有两组数据,M和T,其中T是由M经过一个旋转和一…
作者:王先荣 大约在两年前翻译了<随机抽样一致性算法RANSAC>,在文章的最后承诺写该算法的C#示例程序.可惜光阴似箭,转眼许久才写出来,实在抱歉.本文将使用随机抽样一致性算法来来检测直线和圆,并提供源代码下载. 一.RANSAC检测流程 在这里复述下RANSAC的检测流程,详细的过程见上一篇翻译文章: RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数.     RANSAC通过反复选择数据中的一组随机子集来达成目标.被选取的子集被假设为局内点…
今天的计算机视觉课老师讲了不少内容,不过都是大概讲了下,我先记录下,细讲等以后再补充. SIFT特征: 尺度不变性:用不同参数的高斯函数作用于图像(相当于对图像进行模糊,得到不同尺度的图像),用得到的图像作差,找极值(相 当于穷举不同尺度空间的图像,找其特征点,在不同尺度下,都在极值范围之内,故能满足尺度不变性. 然后要找到极值点的位置,对其进行定位. 然后对极值进行描述. 旋转不变性:用梯度方向来表示极值点的方向,定义主方向能保证旋转不变性. 光照不变性 SIFT的特征点检测是在DOG图像上进…
The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed data. Given a dataset whose data elements contain both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting resul…
1.解决问题: 当一组样本数据中含有(较小波动的)正常数据(inliers)和(较大波动的)异常数据(outliers)且异常数据的量还不小于正常数据的量时,用最小二乘法将难以获得期望的直线(即能拟合正常数据的直线),随机抽样一致(RandomSAmple Consensus, RANSAC)算法就可以用来代替最小二乘法算出期望的直线参数.这里为便于讨论局限于直线模型,但RANSAC算法适用任何模型. 如下图所示,RANSAC算法的目的就是从数据集中剔除红色的点,得到一条能拟合蓝色点的直线. 2…
点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现.不过多插一句,自Niloy J Mitra教授的Global contrast based salient region detection出现,最优分割到底鹿死谁手还不好说.暂且不论他开挂的图像处理算法,先安心做一个PCL吹~ 点云分割的目的提取点云中的不同物体,从而实现分而治之,突出重点,单独处理的目的.而在现实点云数据中,往往对场景中的物体有一定先验知识.比如:桌面墙面多半是大平面,桌上的罐子应该是圆柱体,长方体…
期间遇到很多问题. 记一个最主要的是: LINK2019 无法识别的外部符号,然后某一个函数的函数名 然后是 @@函数名 (@) 大概长成这样.或者还就根本就是 无法识别的外部符号. 解决方案: 我这里最主要的两个解决方案是: 2.你自己写的函数声明的头文件也写了函数定义的cpp文件,却依然出现LNK2019错误.可能原因:忘记将这两个文件加入工程了.一般出现于用Visual Studio和记事本(或UltraEdit)混合开发过程,你用记事本include了相应的头文件,却忘了在Visual…
本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文. RANSAC是"RANdom SAmple Consensus(随机抽样一致)"的缩写.它可以从一组包含"局外点"的观测数据集中,通过迭代方式估计数学模型的参数.它是一种不确定的算法--它有一定的概率得出一个合理的结果:为了提高概率必须提高迭代次数.该算法最早由Fischler和Bolles于1981年提出. RANSAC…
给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式.截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上. 生产实践中的数据往往会有一定的偏差.例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值.通过实验,可以得到一组X与Y的测试值.虽然理论上两个未知数…
RANSAC范例的正式描述如下: 首先,要给定: 1一个模型,该模型需要最少n个数据点去实例化它的自由参数: 2一组数据点P,P中包含数据点的数量#(P)大于n. 然后, 从P中随机地选择n个点(组成P的一个子集S1)并实例化这个模型(构造成M1). 接下来, 利用实例化的模型M1去测定P中点的某个子集S1*,这些点相对于M1的错误被限制在一个给定的阈值下,其中S1*被称作S1的一致性集合. 或者: 利用实例化的模型M1去逐个测定P中的其它点,舍掉那些偏离M1较大的点,保留那些偏离M1较小的点并…
作者:桂. 时间:2017-04-25  21:05:07 链接:http://www.cnblogs.com/xingshansi/p/6763668.html 前言 仍然是昨天的问题,别人问到最小二乘.霍夫变换.RANSAC在直线拟合上的区别.昨天梳理了霍夫变换,今天打算抽空梳理一下RANSAC算法,主要包括: 1)RANSAC理论介绍 2)RANSAC应用简介: 内容为自己的学习记录,其中很多地方借鉴了别人,最后一起给出链接. 一.RANSAC理论介绍 普通最小二乘是保守派:在现有数据下,…
一.概述 RANSAC(RANdom SAmple Consensus)随机抽样一致,是用来从一组观测数据中估计数学模型参数的一种方法.由于是观测数据,避免不了有误差存在,当误差太大了就变成了无效数据outlier(与outlier对应的是inlier有效数据).如果我们在估计参数的时候没有剔除掉这些无效的数据,结果会被这些无效数据所影响.所以我们希望采用一种方法从数据集的inliers中估计模型参数,这就是RANSAC. 二.算法描述 1.  输入 数据--------------------…
原文链接:https://blog.csdn.net/qq_25352981/article/details/46914837#commentsedit 本文目标是通过使用SIFT和RANSAC算法,完成特征点的正确匹配,并求出变换矩阵,通过变换矩阵计算出要识别物体的边界(文章中有部分源码,整个工程我也上传了,请点击这里). SIFT算法是目前公认的效果最好的特征点检测算法,关于该算法的就不多说了,网上的资料有很多,在此提供两个链接,一个是SIFT原文的译文,一个是关于SIFT算法的详细解释:…
代码下载地址: 1.Matlab版本:http://pan.baidu.com/s/1eQIzj3c.进入目录后,请自行定位到该博客的源代码与数据的目录“…
利用PCL中分割算法. pcl::SACSegmentation<pcl::PointXYZ> seg; ,不利用法线参数,只根据模型参数得到的分割面片,与想象的面片差距很大, pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ()); pcl::PointIndices::Ptr inliers (new pcl::PointIndices ()); // 创建分割对象 pcl::SACSegmentat…
代码下载地址      http://pan.baidu.com/s/1eQIzj3c 进入目录后,请自行定位到该博客的源代码与数据的目录“…
临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下 主要是了解思想,就不写具体的计算公式之类的了 (一) ICP算法(Iterative Closest Point迭代最近点) ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1 如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的 (图1) ICP是改进自对应点集配准算法的 对应点集配准…
关于算法原理请参考<基于SURF特征的图像与视频拼接技术的研究>. 一.问题提出         RANSAC的算法原理并不复杂,比较复杂的地方在于"建立模型"和"评价模型".我们经常看到的是采用"直线"或者"圆"作为基本模型进行"建立",而采用所有点到该"直线"或"圆"的欧拉距离作为标准来"评价"(当然是越小越好).在经典的图像拼接算…
转载自王先荣 http://www.cnblogs.com/xrwang/p/SampleOfRansac.html 作者:王先荣 大约在两年前翻译了<随机抽样一致性算法RANSAC>,在文章的最后承诺写该算法的C#示例程序.可惜光阴似箭,转眼许久才写出来,实在抱歉.本文将使用随机抽样一致性算法来来检测直线和圆,并提供源代码下载. 一.RANSAC检测流程 在这里复述下RANSAC的检测流程,详细的过程见上一篇翻译文章: RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参…
这两天看<计算机视觉中的多视图几何>人都看蒙了,转载一些干货看看 转自王先荣 http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html 作者:王先荣    本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文.    RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写.它可以从一组包含“局外点”的观测数…
博客转载自:http://blog.csdn.net/app_12062011/article/details/78131318 点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现. 点云分割的目的提取点云中的不同物体,从而实现分而治之,突出重点,单独处理的目的.而在现实点云数据中,往往对场景中的物体有一定先验知识.比如:桌面墙面多半是大平面,桌上的罐子应该是圆柱体,长方体的盒子可能是牛奶盒......对于复杂场景中的物体,其几何外形可以归结于简单的几何形状.这为分割带…
关于sift资源总结: http://blog.csdn.net/masibuaa/article/details/9191309 两个比较好的资源: https://my.oschina.net/keyven/blog/221792 http://www.cnblogs.com/v-July-v/archive/2012/11/20/3125419.html 在树的构建时,如何进行左右树的划分是关键,kd-tree采取的策略是,以分区内所有维中,方差最大的维为轴,以轴所在维的中值为轴值,进行左…
当初选方向时就由于从小几何就不好.缺乏空间想像能力才没有选择摄影測量方向而是选择了GIS. 昨天同学找我帮他做图像匹配.这我哪里懂啊,无奈我是一个别人有求于我,总是不好意思开口拒绝的人.于是乎就看着他给的一章节内容開始敲代码了,今天总算给他完毕了. 做的比較简单,中间也遇到了不少问题,尤其是计算量大的问题,由于老师给的数据是粗配准过的数据, RANSAC算法评估时就简化了下. 理论内容: 第5章 图像配准建立几何变换模型 特征点建立匹配关系之后,下一步就是求解图像之间的变换关系.仿射变换可以非常…
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/28118095 收入囊中 最小二乘法(least square)拟合 Total least square 拟合 RANSAC拟合 葵花宝典 关于least square拟合,我在http://blog.csdn.net/abcd1992719g/article/details/25424061有介绍,或者看以下 watermark/2/text/…
ACM算法分类:http://www.kuqin.com/algorithm/20080229/4071.html 一: 拟合一个平面:使用SVD分解,代码里面去找吧 空间平面方程的一般表达式为: Ax+By+Cz+D=0; 则有: 平面法向量为n=(A,B,C). 第一种方法: 对于空间中n个点(n3) 空间中的离散点得到拟合平面,其实这就是一个最优化的过程.即求这些点到某个平面距离最小和的问题.由此,我们知道一个先验消息,那就是该平面一定会过众散点的平均值.接着我们需要做的工作就是求这个平面…
前言 在进行泡泡机器人[图灵智库]栏目的翻译的过程中,我发现在2018-2019的顶会中,依然有很多文章(我看到的不少于6篇)对RANSAC进行各种改进,这令我感到很吃惊.毕竟该方法在1981年就被提出了,经过将近40年的发展,其各种变种已经对该方法进行了很多的完善,然而依然能够进行进一步改进,可见该方法的广泛应用,及强大的生命力.同时在个人的研究工作中,RANSAC也起到了很大的作用,这激起了我对这一方法进行全面系统学习的热情.经过大约半年的学习,我对这一方法,更确切应该称为“思想”,有了更深…
在开始正式的介绍之前,先做一个简单的定义,以免产生歧义: 1.本文中的“数据点”是指: 1)对于直线拟合.平面拟合等问题,即为相应的二维/三维坐标点: 2)对于从匹配点中估计基本矩阵.单应矩阵等问题,即为一对匹配点坐标级联组成的向量. 一.RANSAC之前 RANSAC在1981年被Martin A. Fischler and Robert C. Bolles两人提出,以解决给定点集的模型估计问题.在现实应用中,我们经常遇到的情况是:给定的点集中存在错误的点.传统的模型估计方法,大都采用所有的点…
目录 RANSAC算法线性回归(波斯顿房价预测) 一.RANSAC算法流程 二.导入模块 三.获取数据 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ RANSAC算法线性回归(波斯顿房价预测) 虽然普通线性回归预测结果总体而言还是挺不错的,但是从数据上可以看出数据集中有较多的离群值,因此本节将使用RANSAC算法针对离群值做处理,即根据数据…