在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间的欧氏距离,了解到各个文本之间的相似程度.当然,还有其他很多相似度度量方式,比如说余弦相似度. 在<皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)>一文中简要地介绍了余弦相似度.因此这里,我们比较一下欧氏…
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品:  考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户:  考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度…
余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小.相比距离度量,余弦相似度更加注重两个向量在方向上的差异,而非距离或长度上. 与欧几里德距离类似,基于余弦相似度的计算方法也是把用户的喜好作为n-维坐标系中的一个点,通过连接这个点与坐标系的原点构成一条直线(向量),两个用户之间的相似度值就是两条直线(向量)间夹角的余弦值.因为连接代表用户评分的点与原点的直线都会相交于原点,夹角越小代表两个用户越相似,夹角越大代表两个用户的相似度越小.同时在三角系数中,角的余弦值是在[-1,…
之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Correlation Coefficient)和余弦相似度(Cosine Similarity)之间有什么关联呢? 首先,我们来看一下什么是余弦相似度.说到余弦相似度,就要用到余弦定理(Law of Cosine). 假设两个向量和之间的夹角为.,向量的长度分别是和,对应的边长为向量减去向量的长度,也就是. 根据余弦…
余弦相似度计算: \cos(\bf{v_1}, \bf{v_2}) = \frac{\left( v_1 \times v_2 \right)}{||v_1|| * ||v_2|| } \cos(\bf{M_1}, \bf{M_2}) = \frac{\left(M_1 \times M_2^T \right)}{||M_1|| \times ||M_1||^T } ### 矩阵矢量化操作 ### 按行计算余弦相似度 ### 两矩阵计算相似度向量应为同维度 ### 返回值RES为A矩阵每行对B矩…
1.余弦相似度可用来计算两个向量的相似程度 对于如何计算两个向量的相似程度问题,可以把这它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向.两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同.线段重合:如果夹角为90度,意味着形成直角,方向完全不相似:如果夹角为180度,意味着方向正好相反.因此,我们可以通过夹角的大小,来判断向量的相似程度.夹角越小,就代表越相似. 以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ.余弦定理告诉我们,可以用下…
版权声明:本文为博主原创文章,地址:http://blog.csdn.net/napoay,转载请留言. 总结Jackcard类似度和余弦类似度. 一.集合的Jackcard类似度 1.1Jackcard类似度 Jaccard类似指数用来度量两个集合之间的类似性,它被定义为两个集合交集的元素个数除以并集的元素个数. 数学公式描写叙述: J(A,B)=|A∩B||A∪B| 这个看似简单的算法有非常大的用处,比方: 抄袭文档 高明的抄袭者为了掩盖自己抄袭的事实.会选择性的抄袭文档中的一些段落,或者对…
推荐系统之余弦相似度的Spark实现 (1)原理分析    余弦相似度度量是相似度度量中最常用的度量关系,从程序分析中, 第一步是数据的输入, 其次是使用相似性度量公式 最后是对不同用户的递归计算.    本例子是基于欧几里得举例的相似度计算. (2)源代码 package com.bigdata.demo import org.apache.spark.{SparkContext, SparkConf} /** * Created by SimonsZhao on 3/29/2017. */…
1. 词向量上的操作(Operations on word vectors) 因为词嵌入的训练是非常耗资源的,所以ML从业者通常 都是 选择加载训练好 的 词嵌入(Embedding)数据集.(不用自己训练啦~~~) 任务: 导入 预训练词向量,使用余弦相似性(cosine similarity)计算相似度 使用词嵌入来解决 "Man is to Woman as King is to __." 之类的 词语类比问题 修改词嵌入 来减少它们的性别歧视 import numpy as n…
http://cucmakeit.github.io/2014/11/13/%E4%BF%AE%E6%AD%A3%E4%BD%99%E5%BC%A6%E7%9B%B8%E4%BC%BC%E5%BA%A6%E4%B8%8E%E7%9A%AE%E5%B0%94%E6%A3%AE%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0/ 最后一段总结精辟: 需要注意的一点是修正的余弦相似度与皮尔森相关系数之间的细微差别.我之前也一直以为两个公式一样,只是意义上不同,但是仔细观察可以看到…