图像产生加性零均值高斯噪声.在灰度图上加上噪声,加上噪声的方式是每一个点的灰度值加上一个噪声值.噪声值的产生方式为Box-Muller算法生成高斯噪声. 在计算机模拟中,常常须要生成正态分布的数值.最主要的一个方法是使用标准的正态累积分布函数的反函数. 除此之外还有其它更加高效的方法.Box-Muller变换就是当中之中的一个. 还有一个更加快捷的方法是ziggurat算法.以下将介绍这两种方法. 一个简单可行的而且easy编程的方法是:求12个在(0,1)上均匀分布的和.然后减6(12的一半)…
Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ksize)highlight=smooth#void medianBlur(InputArray src, OutputArray dst, int ksize)" title="Permalink to this definition" style="color: rg…
# -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #归一化块滤波 import cv2 import numpy as np fn="test3.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上高斯噪声,能够參考曾经博文中的内容 ...... ...... #滤波去噪 lbimg=cv2.blur(newimg,(3,3)) cv2.imsh…
拉普拉斯线性滤波,.边缘检測  . When ksize == 1 , the Laplacian is computed by filtering the image with the following  aperture: Laplace 计算图像的 Laplacian 变换 void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 ); src 输入图像. dst 输出图像. aperture_size 核大小 (…
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com import cv2 import numpy as np from scipy import signal fn="test6.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) srcimg=np.array(…
我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率函数, 定义为:  是图像的累计归一化直方图. 我们创建一个形式为  的变化,对于原始图像中的每一个值它就产生一个 ,这样  的累计概率函数就能够在全部值范围内进行线性化,转换公式定义为: 注意 T 将不同的等级映射到  域.为了将这些值映射回它们最初的域,须要在结果上应用以下的简单变换: 上面描写…
filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ddepth, InputArraykernel, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT ) Python: cv2.filter2D(src, ddepth, kernel[, dst[,…
插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpolation method: INTER_NEAREST - a nearest-neighbor interpolation INTER_LINEAR - a bilinear interpolation (used by default) INTER_AREA - resampling using…
指数变换的基本表达式为:y=bc(x-a)-1 当中參数b.c控制曲线的变换形状,參数a控制曲线的位置. 指数变换的作用是扩展图像的高灰度级.压缩低灰度级.能够用于亮度过高的图像 本博客全部内容是原创,假设转载请注明来源 http://blog.csdn.net/myhaspl/ 对太阳图像进行变换,使低亮度区(温度较低区域)不再显示,突出亮度区(温度较高区域). newimg=np.array(np.power(b,c*(img-a))-1,np.uint8) cv2.imshow('src'…
# -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #邻域平均法滤波,半径为2 import cv2 import numpy as np fn="test3.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上椒盐噪声 param=20 #灰阶范围 w=img.shape[1] h=img.shape[0] newimg=np.array(img…