「LGP4719【模板】动态dp」】的更多相关文章

「单调队列优化DP」P2034 选择数字 题面描述: 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入格式 第一行两个整数n,k 以下n行,每行一个整数表示a[i]. 输出格式 输出一个值表示答案. 输入输出样例 输入 #1 5 2 1 2 3 4 5 输出 #1 12 说明/提示 对于20%的数据,n <= 10 对于另外20%的数据, k = 1 对于60%的数据,n <= 1000 对于100…
题目 尽管知道这个东西应该不会考了,但是还是学一学吧 哎要是去年noip之前学该多好 动态\(dp\)就是允许修改的一个\(dp\),比如这道题,我们都知道这是一个树上最大点权独立集 众所周知方程长这个样子 \[dp_{u,0}=\sum_{(u,v)\in e}min(dp_{v,0},dp_{v.1})\] \[dp_{u,1}=a_v+\sum_{(u,v)\in e}dp_{v,0}\] 但是有了修改我们就没有办法做了 写不下去了,挂一个yyb跑路吧 大概就是一句话,维护处每一个点的轻儿…
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「SP 6779」GSS7 「NOIP 2018」「洛谷 P5024」保卫王国 \(\mathcal{Introduction}\) \(\mathcal{Problem~1}\)   给定序列 \(\{a_n\}\),其中 \(a_i\in\mathbb Z\),求其最大子段和(不能为空).   很显然的 DP…
显然直接 \(01\) 背包会超时并且超空间 套路:分层 \(DP\) 「考虑将每个子结构看作一层(也就是包含了不止 \(1\) 个物品的信息),并且大层不会对小层造成影响,可以考虑先进行每一层的自我更新(即用当前层物品更新当前层答案),再进行层的合并,此时考虑低层对高层的影响」 正题 那么这题有一个特殊性质: \(V_i = a \times 2^b\) b值大的物品不会影响零碎剩余的重量上限. 将物品按b值分阶段处理. 那么就是分层 \(DP\) 先通过普通的 \(01\) 背包更新当前层自…
用途 对于某些树形dp(目前只会树上最大权独立集或者类似的),动态地修改点权,并询问修改后的dp值 做法(树剖版) 以最大权独立集为例 设$f[x][0/1]$表示x选不选,这棵子树的最大权独立集大小 那么有(设y是x的孩子) $$f[x][0]=\sum{max\{f[y][0],f[y][1]\}} , f[x][1]=val[x]+\sum{f[y][0]}$$ 那么在只关心其中的一个孩子y'的情况下,我们可以得到方程 $$f[x][0]=S_0+max\{f[y'][0],f[y'][1…
题意 给一个长度为\(n(\leq 300)\)的\(01\)串,每次可以把\(k(\leq 8)\)个相邻字符合并,得到新字符和一定分数,最大化最后的得分 题解 考虑设计dp:\(dp[S][i][j]\)表示区间\([i, j]\)合并为\(S\),最大得分是多少. 这么考虑一定是不遗漏的.如果\([i, j]\)留下来的区间长度\(>k\),那这个合并方案一定会在包含它的大区间计算到,所以我们只考虑能合并都合并完的情况 枚举缩完最后一个位是啥,这对应\([i, j]\)的一个长度\(\bm…
Codeforces 686 D. Kay and Snowflake 要求$O(n)$求出以每个节点为根的重心. 考虑对于一个根节点$u$,其重心一定在[各个子树的重心到$u$]这条链上.这样就能够$O(n)$推出来了.证明起来难证易忘.不如记住树的重心的几条奇妙性质: 1. 以重心为根,各子树大小都不超过树的一半. 2. 已知一子树$v$的重心为$x$,则$v$父节点$u$的重心一定在$(x,u)$这条链上. ... 下次用到了再说 Codeforces 842 C. Ilya And Th…
期望=Σ概率*权值 1. Codeforces 148-D 考虑用$f[i][j]$表示princess进行操作时[还剩有i只w,j只b]这一状态的存在概率.这一概率要存在,之前draw out的一定是b,跳出的可能是w可能是b.$ans=\sum\limits f[i][j]*i/(i+j)$ 需要注意的是操作时有先后的.由于我们只关心princess,那么上一轮的顺序必须满足princess, dragon, scared mice. 由于i,j都是整数,在处理概率的时候要*1.0或(dou…
题目 来学\(2\)-\(sat\)了 这个东西确实不难 这个算法就是给你一堆\(bool\)变量\(x_1,x_2...x_n\),之后给你一些限制 限制的形式就是给你一对\((u,o1,v,o2)\) 让\(x_u=o1\)或者\(x_v=o2\) 之后满足所有限制 这个东西非常容易就能抽象成一个图论模型 我们把每个\(x_i\)拆成\(i\)和\(i'\)两个点,分别表示真和假 我们对于每一个限制,连出去一些边,边\((x,y)\)的含义是选择了\(x\)就必须选择\(y\) 举个例子吧…
传送门 Solution \(f_{i,0}\) 表示以i节点为根的子树内,不选i号节点的最大独立集 \(f_{i,1}\)表示以i节点为根的子树内,选i号节点的最大独立集 \(g_{i,0}\) 表示以i节点为根的子树内,不选i号节点,不算它的重节点子树的最大独立集 \(g_{i,1}\) 表示以i节点为根的子树内,选i号节点,不算它的重节点子树的最大独立集 把矩阵乘法的加法改成max,乘法改成加法,仍然符合结合律. 先进行树链剖分,对于同一条链上的点,我们的更新可以写成如下的矩阵乘法: \[…
勾起了我悲伤的回忆 -- NOIP2018 316pts -- 主要思想:将 DP 过程分解为方便单点修改和一个区间合并的操作(通常类似矩阵乘法),然后用数据结构(通常为线段树)维护. 例:给定一个长为 \(n\) 的整数序列,相邻两个数最多选一个,有 \(m\) 次修改序列中的一个数,求每次修改后选出数之和的最大值. \(n,m\leq 10^5\) . 如果不会做不带修改的情况,请默默摁 Ctrl + w 然后去学 DP 入门 如果不带修改,明显设 \(f_{i,0/1}\) 表示当第 \(…
LOJ 思路 显然是要DP的.设\(dp_{u,i}\)表示\(u\)子树内一个包含\(u\)的连通块异或出\(i\)的方案数,发现转移可以用FWT优化,写成生成函数就是这样的: \[ dp_{u}=x^{val_u}\prod (dp_v+1) \] 最后答案是所有DP值的和,于是获得了朴素的\(O(nmQ)\)的做法.(中间运算全部用点值表示) 显然是要用动态DP优化的,我们另外记一个\(S_u\)表示子树的DP值和自己的DP值的和,写成矩阵的形式,就是 \[ \left[\begin{ma…
题目传送门 http://192.168.21.187/problem/1236 http://47.100.137.146/problem/1236 题解 题目中要求的显然是那个状态下的直径嘛. 所以这道题有一个非常简单的做法--线段树分治. 直接把每一条边按照 \(l, r\) 的区间放到线段树上进行分治,遍历的时候用并查集维护直径就可以了. 时间复杂度为 \(O(n\log^2n)\). 很早以前就写了这个算法,代码附在了最后,不多讲了. 但是这道题还有一个方法--动态 DP. 线段树分治…
题目传送门 容易想到一种暴力 DP:先转化成对于每个 \(k\) 求出 \(\max_{i\in S}|i-w_i|\le k\) 的方案数,最后差分 然后问题转化成每个叶子的权值有个取值区间,注意这时我们可以把每个点的权值分成 \(<W,=W,>W\)(看作 \(0,1,2\) )三类处理,然后 DP \(f[u][0/1/2]\) 然后你会很快发现这么做不行,因为选取某些叶子集合时,根节点的权值可以小于 \(W\) 也可以大于 \(W\) ,直接用 \(2^m-1\) 减掉 \(f[u][…
这次聊聊「动态DNS」. DNS上周已经介绍过了,就是提供主机名和IP地址对应关系的结构.「动态DNS」是对主机名和IP地址的对应关系提供动态管理的结构. 以前的DNS没有考虑IP地址变化的情况.但是,在使用DHCP来分配IP地址的网络中,IP地址经常发生变化.因此,相同的主机名每次都会指向不同的主机. 使用刚才提到的「动态DNS」,即使IP地址发生变化,主机名和变化了的IP地址也会自动对应起来. 动态DNS经常被用在个人的服务器中.大多数的宽带线路中,面向个人的都是从供应商处动态分配的IP地址…
「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iA​i​​,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一段),并且每段至少有一个元素,使得和最大的那一段最小. 请你求出这个最小值. 输入格式 第一行两个整数 n,K n, Kn,K,意义见题目描述.接下来一行 n nn 个整数表示序列 Ai A_iA​i​​. 输出格式 仅一行一个整数表示答案. 样例 样例输入 9 4 1 1 1 3 2 2 1 3…
题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入输出格式 输入格式: 第一行,\(n,m\),分别代表点数和操作数. 第二行,\(V_1,V_2,...,V_n\),代表\(n\)个点的权值. 接下来\(n-1\)行,\(x,y\),描述这棵树的\(n-1\)条边. 接下来\(m\)行,\(x,y\),修改点\(x\)的权值为\(y\).…
[Luogu 3701] 「伪模板」主席树 这是一道网络流,不是主席树,不是什么数据结构,而是网络流. 题目背景及描述都非常的暴力,以至于 Capella 在做此题的过程中不禁感到生命流逝. S 向 byx 的树中的每一个人连有向边,手气君的树中的每一个人向 T 连有向边,边权为这个人的寿命.统计同一棵树中的膜法师数量 x.如果一个人是主席,那么边权要加上 x.(续得好啊) 然后,如果 byx 树中的一个点 i 能赢手气君树中的点 j,那么连 i->j,边权为 1. 跑最大流,最终答案为 min…
layout: post title: 「kuangbin带你飞」专题二十 斜率DP author: "luowentaoaa" catalog: true tags: mathjax: true - kuangbin - 动态规划 - 斜率DP 传送门 A.HDU - 3507 Print Article 题意 就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 题解 概率DP的入门题,把我搞得要死要活的. 首先dp[i]表示输出前i…
layout: post title: 「kuangbin带你飞」专题二十二 区间DP author: "luowentaoaa" catalog: true tags: - kuangbin - 区间DP - 动态规划 传送门 B.LightOJ - 1422 Halloween Costumes 题意 按顺序参加舞会,参加一个舞会要穿一种衣服,可以在参加完一个舞会后套上另一个衣服再去参加舞会,也可以在参加一个舞会的时候把外面的衣服脱了,脱到合适的衣服,但是脱掉的衣服不能再穿,参加完…
layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathjax: true - kuangbin - 动态规划 传送门 A.HDU1024 Max Sum Plus Plus 题意 给你N个数,然后你分成M个不重叠部分,并且这M个不重叠部分的和最大. 思路 动态规划最大m字段和,dp数组,dp[i][j]表示以a[j]结尾的,i个字段的最大和 两种情况:1.第a[j…
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整除,其中末位为 2 的有 30 种,末位为 4 的有 60 种. 输入格式 输入第一行是一个整数 TTT,表示测试数据的个数,以下每行一组 s 和 d,中间用空格隔开.s 保证只包含数字 0,1,2,3,4,5,6,7,8,9 输出格式 每个数据仅一行,表示能被 d 整除的排列的个数. 输入输出样例…
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上加上修改操作,从而使得问题变成动态的问题 这道题的问题就是普通的树形\(DP\)上加上了修改点权的操作 题意: 给定一棵 \(n\) 个点的树.\(i\) 号点的点权为 \(a_i\).有 \(m\) 次操作,每次操作给定 \(u\),\(w\),表示修改点 \(u\) 的权值为 \(w\).你需要在每次操作…
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把DP转移方程写成矩阵乘法,然后用线段树(树上的话就是树剖)维护矩阵,这样就可以做到修改了. 注意这个"矩阵乘法"不一定是我们常见的那种乘法和加法组成的矩阵乘法.设\(A * B = C\),常见的那种矩阵乘法是这样的: \[C_{i, j} = \sum_{k = 1}^{n} A_{i,…
题意 题目链接 Sol 动态dp板子题.有些细节还没搞懂,待我研究明白后再补题解... #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 1e5 + 10, INF = INT_MAX; template<typename A, typename B> inline bool chmax(A &x, B y) { return x < y ? x = y…
题解 在冬令营上听到冬眠的东西,现在都是板子了猫锟真的是好毒瘤啊(雾) (立个flag,我去thusc之前要把WC2018T1乱搞过去= =) 好的,我们可以参考猫锟的动态动态dp的课件,然后你发现你什么都看不懂(菜啊 但是我们仔细看一看,可以发现用数据结构维护矩阵,那么我们尝试构造一个矩阵 \(\begin{bmatrix} \ g_{u,0} & g_{u,0}\\ g_{u,1} & 0 \end{bmatrix} \begin{bmatrix} f_{son[u],0}\\ f_{…
题目:https://www.luogu.org/problemnew/show/P4719 关于动态DP似乎有猫锟的WC2018论文,但找不见:还是算了. http://immortalco.blog.uoj.ac/archive 动态DP大概就是求这样的问题. 把轻儿子对自己的转移值写进矩阵 g 里,重新定义一下乘法运算,自己的值矩阵 f 就是重儿子的 f 乘上自己的 g 了. 树剖的线段树维护区间内的那些 g 的连乘积,则从自己开始到自己所在重链的底端这一段的 g 连乘就是自己的 f 了(…
\(\color{#0066ff}{ 题目描述 }\) 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点xx的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. \(\color{#0066ff}{输入格式}\) 第一行,\(n,m\)分别代表点数和操作数. 第二行,\(V_1,V_2,...,V_n\),代表\(n\)个点的权值. 接下来\(n-1\)行,\(x,y\),描述这棵树的\(n-1\)条边. 接下来\(m\…
是动态dp的板子 大致思想就是用g[u]来表示不包含重链转移的dp值,然后用线段树维护重链,这样线段树的根就相当于这条重链的top的真实dp值 每次修改的时候,修改x点会影响到x到根的真实dp值,但是只会影响到每条重链的低端点的dp值,相当于在log个线段树上单点修改 #include<iostream> #include<cstdio> using namespace std; const int N=200005; int n,m,a[N],h[N],cnt,de[N],fa[…
题目描述 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y,表示修改点x的权值为y. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入输出格式 输入格式: 第一行,n,m分别代表点数和操作数. 第二行,V1,V2,...,Vn,代表n个点的权值. 接下来n−1行,x,y,描述这棵树的n−1条边. 接下来m行,x,y,修改点x的权值为y. 输出格式: 对于每个操作输出一行一个整数,代表这次操作后的树上最大权独立集. 保证答案在int范围内 动态DP讲解:   考虑最大独…