python机器学习——kmeans聚类算法】的更多相关文章

K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比…
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,想想如果给你50个G这么大的文本,里面已经分好词,这时需要将其按照给定的几十个关键字进行划分归类,监督学习的方法确实有点困难,而且也不划算,前期工作做得太多了. 这时候可以考…
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) 1.概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大. 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标. 2.核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. k-means算…
关注我们的公众号哦!获取更多精彩哦! 1.问题导入 假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置.事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的"某个地址",然后步行到每个组内的地址.那么,如何确定这些组,如何确定这些组的"某个地址"?答案就是聚类.而本文所提供的k-means聚类分析方法就可以用于解决这类问题. 2. k均值…
前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. k-means简介 在不带标签的多维数据集中 寻找确定数量 的簇. 最优的聚类结果需要符合以下俩个假设: 簇中心点 cluster center 是属于该簇的所有数据点坐标的算术平均值 一个簇的每个点到该簇中心点的距离 比 到其他簇中心点的距离 短. 原始数据,包含4个明显的簇 评估器拟合数据: 高…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
使用python进行kmeans聚类 假设我们要解决一个这样的问题. 以下是一些同学,大萌是一个学霸,而我们想要找到这些人中的潜在学霸,所以我们要把这些人分为两类--学霸与非学霸. 高数 英语 Python 音乐 小明 88 64 96 85 大明 92 99 95 94 小朋 91 87 99 95 大朋 78 99 97 81 小萌 88 78 98 84 大萌 100 95 100 92 1 方法一:使用scipy 那么使用scipy的Python实现的代码如下: import numpy…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚类算法流程 3.1 输入 3.2 输出 3.3 流程 四.K-Means初始化优化之K-Means++ 五.K-Means距离计算优化之elkan K-Means 六.大数据优化之Mini Batch K-Means 七.K-Means聚类算法优缺点 7.1 优点 7.2 缺点 八.小结 更新.更全…