2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n)的阶乘,RE得不行.发现用到了大于sqrt (n)的阶乘. 然后翻看TJ. 发现phi可以现求!就用那个式子.我竟然都忘了! 注意最后剩下的一个大于sqrt (i)的质因数. #include<iostream> #include<cstdio> #include<cstrin…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][Status] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sampl…
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 一个整数,为所求的答案. 样例输入 6 样例输出 15 题解 欧拉函数 易得知满足gcd(n,x)==i的小于等于n的x的个数为phi(n/i), 并且欧拉函数可以在O(√n)的时间内快速求出.. 于是可以先求出所有n的因子,再用欧拉函数得出答案. 由于因子是成对出现的,所以因子并不需要枚举到n,只需枚举到…
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理论上来说复杂度是\(O(n)\)的,但是\(d\)的值十分有限.在\(2^{32}\)内最多的约数也只有1920个. /* */ #include<bits/stdc++.h> #define LL long long #define int long long const int MAXN =…
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求答案即可 #include <bits/stdc++.h> using namespace std; #define int long long int phi(int n) { int m = floor(sqrt(n + 0.5)), ans = n; for (int i = 2; i &l…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=2705 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sam…
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好. 注意到h(n) = ∑ d * phi(n / d) (d | n) 是狄利克雷卷积的形式, 而且f(x) = x 和 f(x) = phi(x) 都是积性函数, 所以答案h(x) 也是积性函数. 所以h(x) = Π h(p^k) (p 是 x 的质因数) 由phi(p^k) = p^k -…
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sample Output 15 HINT [数据范围] 对于60%的数据,0<N<=2^16. 对于100%的数据,0<N<=2^32. ——————————————————————— 这道题如果一…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道ans=∑f[k]*k 那么接下里就是如何求f[k]的问题了 ∵gcd(x,n)=k ∴gcd(x/k,n/k)=1 也就是说要在n/k以内找到与n/k互质的数的个数,明显就是欧拉函数,所以f[k]=φ(n/k)…
[题目分析] 狄利克雷卷积. 然后直接求出欧拉函数,计算和即可. [代码] #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <map> #include <set> #include <queue> #include <string> #include <iostream> #incl…
传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2416 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms.…
3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] Description 在一片美丽的大陆上有100000个国家,记为1到100000.这里经济发达,有数不尽的账房,并且每个国家有一个银行.某大公司的领袖在这100000个银行开户时都存了3大洋,他惜财如命,因此会不时地派小弟GFS清点一些银行的存款或者让GFS改变某个银行的存款.该村子在财产上的求…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于例子(2,2),(2,4),(3,3),(4,2)…
题目 题目描述 给定整数\(N\),求\(1 \le x,y \le N\)且\(gcd(x,y)\)为素数的数对\((x,y)\)有多少对. \(gcd(x,y)\)即求\(x,y\)的最大公约数. 输入格式 输入一个整数N 输出格式 输出一个整数,表示满足条件的数对数量. 数据范围 \[ 1 \le N \le 10^7 \] 输入样例: 4 输出样例: 4 解题报告 关于本题 这道题目,在蒟蒻我花费了30min一顿瞎搞AC后,然后想要看网络上的题解,都是一些什么莫比乌斯反演,吓了一跳. 原…
Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now…
Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).    现在,C君希望你告诉他队伍整齐时能看到的学生人数. Input 共一个数N. Output 共一个数,即C君应看到的学生人数. Sample Input 4 Sample Output 9 HINT [数据规模和约定] 对于 100% 的数据,1 ≤ N ≤ 40000 -…
[SDOI2008]仪仗队 Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).现在,C君希望你告诉他队伍整齐时能看到的学生人数. Input 共一个数N. Output 共一个数,即C君应看到的学生人数. Sample Input 4 Sample Output 9 HINT [数据规模和约定] 对于 100% 的数据,1 ≤ N…
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sample Output 15 HINT [数据范围] 对于60%的数据,0<N<=2^16. 对于100%的数据,0<N<…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $∑_{i=1}^{N}gcd(i,N)$ $=∑_{i=1}^{N}∑_{d|gcd(i,N)}\phi(d)$ $=∑ \phi(d)∑ _{1=<i<=N \land d|i \land d|N}1$ $=∑_{d|N}\phi(d)\lfloor\frac{i}{d}\rfloor$ [代码…
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n) &=\sum_{d=1}^nd\sum_{i=1}^n[\gcd(i,n)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}[\gcd(i,\lfloor\frac{n}{d}\rfloor)=1] \end{aligne…
Code: #include<cstdio> #include<algorithm> #include<cmath> #include<string> using namespace std; typedef long long ll; void setIO(string a){freopen((a+".in").c_str(),"r",stdin);} int main(){ //setIO("input&…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^32) 只有一组数据,很好搞,答案就是sigma(phi(n/d)),直接搜就行了. //STATUS:C++_AC_8MS_11284KB #include <functional> #include <algorithm> #include <iostream> //#i…
Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i,…
考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理. 然后gg了35分. 题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了 p是素数,所以可以搞  然后我们用矩阵快速幂求出幂,然后快速幂即可解决问题 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; #de…
题意: 给出一个数,给出的形式是其分解质因数后,对应的质因数pi及其次数qi,问对这个数不停求phi,直至这个数变成1,需要多少次.(多组数据) 范围:pi <= 1e5,qi <= 1e9 分析: 当x > 2时,phi[x]均为偶数.而每次求phi之后,2的次数只会减一,然后其他的质因数分解出多个2,因此数x分解得到的2的个数就是答案了. 如果一开始不存在质因数2,那么需要多进行一次phi操作. 程序: #include <cstdio> #include <cst…
[题意]给定n,求∑gcd(i,n),(1<=i<=n),n<=2^32 [算法]数论(欧拉函数,gcd) [题解]批量求gcd的题目常常可以反过来枚举gcd的值. 记f(g)为gcd(i,n)=g的i的个数,则有ans=∑f(g)*g,g|n. gcd(i,n)=g即gcd(i/g,n/g)=1,f(g)转化为φ(n/g). 所以,ans=∑g*φ(n/g),g|n. 当然,这种纯数论问题也可以用公式法直接求解. 引用自:clover_hxy gcd分解:d|gcd(a,b)=d|a&…
本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞出来个\(O(\sqrt{n})\)的算法 这题数据怎么这么水 首先看到gcd我们就下意识的对它反演一波对吧 第一步 \[ \sum_{i=1}^n \gcd(n,i) = \sum_{d|n} \varphi(d) \frac{n}{d} \] 这里提供两种化法,得到的结果都是这个. 法一 根据欧…