在Ubuntu16.04 CUDA9.0 cuDNN8.0的环境下安装caffe2 本博客比较简单,cuda9.0 cudnn8.0部分请看上一篇博客,其中详细讲了: 如何安装驱动 安装cuda 安装cudnn 安装tensorflow 本教程主要参考来自Caffe2官方说明文档 For GPU support you will need CUDA, CuDNN, and NCCL. These must be installed from Nvidia's website. 选择ubuntu,…
Ubuntu16.04安装cuda9.0+cudnn7.0 这篇记录拖了好久,估计是去年6月份就已经安装过几遍,然后一方面因为俺比较懒,一方面后面没有经常在自己电脑上跑算法,比较少装cuda和cudnn.但是最近课余时间还行,索性一起整理出来,方便以后查看. 检查自己的计算机是否具备CUDA安装条件 检查GPU是否支持CUDA lspci | grep -i nvidia 显示出NVIDIA GPU版本信息 去CUDA的官网查看自己的GPU版本是否在CUDA的支持列表中(https://deve…
[摘要] docker很好用,但是在GPU服务器上使用docker却比较复杂,需要一些技巧,下面将介绍一下在ubuntu16.04环境下的GPU-docker环境搭建过程. 第一步: 删除之前的nvidia驱动:sudo apt-get purge nvidia-* 安装nvidia-<version> 此处version为396 n 此处需先配置ppa源,速度较慢,慢慢等吧,这里还没想出好办法解决. sudo add-apt-repository ppa:graphics-drivers/p…
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直在自己的电脑上安装虚拟机跑,速度实在太慢,主机本身性能太弱,独显都没有,物理安装Ubuntu也没多大意义,所以考虑用公司性能最强悍的游戏主机(i7 6700+GTX 1070) 做实验,这台主机平时是用来跑HTC VIVE的,现在归我用了o(*≧▽≦)ツ. 原本以为整个一套安装下来会很顺利,一路火花…
  深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑. 1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从ub…
转载请注明出处:http://www.cnblogs.com/buxizhizhoum/p/8086230.html 环境: 系统:ubuntu 16.04 cpu:i5 gpu:gt920m memory:8g disk:SSD 256g 1.安装显卡驱动 首先需要保证电脑有满足cuda要求的显卡,ubuntu一般安装完成后都会使用集成显卡,独立显卡并没有充分利用. ubuntu安装NVIDIA驱动还涉及到和原有驱动的冲突,这部分在网上比较多,也有些坑需要踩,可以自己搜索. 安装nvida的驱…
不多说,直接上干货! 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0…
最近在研究风格化得内容,发现搭建环境实在是很头疼的事情,虽然网上已经有各路大神总结整理好了很多搭建指南,各种问题的解决方案都已经罗列出来供大家参考.然后参考终究是参考,真正自己上手,发现仍旧是各种坑,各种问题层出不穷.所幸最后靠着大咖们的肩膀成功了,现想总结一下本人的搭建之路,也给后来人多一个参考.当然很多下载.安装的步骤就不去明说了,请查阅文末的参考文章. 一.安装N卡驱动 请参考:Ubuntu16.04 Nvidia显卡驱动简明安装指南 https://www.cnblogs.com/sha…
安装准备 1. 安装git.cRUL.gcc/g++和make $ sudo apt-get update $ sudo apt-get install build-essential git curl make $ $ which gcc /usr/bin/gcc 2. 安装Docker和Docker Compose 安装Docker-CE 参考: ubuntu16.04下docker安装和简单使用 ! 注意安装的docker版本是否满足要求 查看docker版本 $ docker --ver…
https://blog.csdn.net/jywowaa/article/details/52263711 学习中用到深度学习的框架,需要搭建caffe.theano和torch框架.经过一个月的不懈奋战,终于搭建好了框架.现在分享简单的搭建过程,为后面要用到深度学习框架的同学节省时间,写了这个博客.因为框架的搭建过程会出现各种问题,不同的硬件(如笔记本.台式机).不同的软件(如依赖库.编译器)和软件的版本(如编译器版本不同,编译框架时会找不到依赖库路径)之间有上百种组合,网络中遇到问题的情况…