本博文是转自如下链接,为了方便自己查阅学习和他人交流.感谢原博主的提供! http://www.aboutyun.com/thread-6849-1-1.html http://www.aboutyun.com/thread-6850-1-1.html 科普Spark,Spark核心是什么,如何使用Spark(1) 阅读本文章可以带着下面问题: 1.Spark基于什么算法的分布式计算(很简单) 2.Spark与MapReduce不同在什么地方 3.Spark为什么比Hadoop灵活 4.Spar…
科普Spark,Spark是什么,如何使用Spark 1.Spark基于什么算法的分布式计算(很简单) 2.Spark与MapReduce不同在什么地方 3.Spark为什么比Hadoop灵活 4.Spark局限是什么 5.什么情况下适合使用Spark 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于…
欢迎转载,转载请注明出处. 概要 本文简要介绍如何使用spark-cassandra-connector将json文件导入到cassandra数据库,这是一个使用spark的综合性示例. 前提条件 假设已经阅读技术实战之3,并安装了如下软件 jdk scala sbt cassandra spark-cassandra-connector 实验目的 将存在于json文件中的数据导入到cassandra数据库,目前由cassandra提供的官方工具是json2sstable,由于对cassandr…
欢迎转载,转载请注明出处,徽沪一郎. 概要 之所以对spark shell的内部实现产生兴趣全部缘于好奇代码的编译加载过程,scala是需要编译才能执行的语言,但提供的scala repl可以实现代码的实时交互式执行,这是为什么呢? 既然scala已经提供了repl,为什么spark还要自己单独搞一套spark repl,这其中的缘由到底何在? 显然,这些都是问题,要解开这些谜团,只有再次开启一段源码分析之旅了. 全局视图 上图显示了java源文件从编译到加载执行的全局视图,整个过程中最主要的步…
Introduction Apache Spark is a general-purpose cluster computing system to process big data workloads. What sets Spark apart from its predecessors, such as MapReduce, is its speed, ease-of-use, and sophisticated analytics. Apache Spark was originally…
前言   其实啊,无论你是初学者还是具备了有一定spark编程经验,都需要对spark源码足够重视起来. 本人,肺腑之己见,想要成为大数据的大牛和顶尖专家,多结合源码和操练编程. 准备工作 1.scala 2.10.4(本地的安装) Scala的安装(本地) 2.Jdk1.7+  或 jdk1.8+ (本地的安装) Jdk 1.7*安装并配置 Jdk 1.8*安装并配置 JDK的windows和Linux版本之下载 3.IntelliJ IDEA IntelliJ IDEA的下载.安装和Word…
本課主題 什么是 Spark 的天堂之门 Spark 天堂之门到底在那里 Spark 天堂之门源码鉴赏 引言 我说的 Spark 天堂之门就是SparkContext,这篇文章会从 SparkContext 创建3大核心对象 TaskSchedulerImpl.DAGScheduler 和 SchedulerBackend 开始到注册给 Master 这个过程中的源码鉴赏,SparkContext 是整个 Spark 程序通往集群的唯一通道,它是程序起点,也是程序终点,所以我把它称之为天堂之门,…
1. 下载Spark 1.1 官网下载Spark http://spark.apache.org/downloads.html 打开上述链接,进入到下图,点击红框下载Spark-2.2.0-bin-hadoop2.7.tgz,如下图所示: 2. 安装Spark Spark安装,分为: 准备,包括上传到主节点,解压缩并迁移到/opt/app/目录: Spark配置集群,配置/etc/profile.conf/slaves以及confg/spark-env.sh,共3个文件,配置完成需要向集群其他机…
1.什么是spark? spark是一个基于内存的,分布式的,大数据的计算框架,可以解决各种大数据领域的计算问题,提供了一站式的服务 Spark2009年诞生于伯克利大学的AMPLab实验室 2010年正式开源了Spark项目 2013年Spark成为Apache下的项目 2014年飞速发展,成为Apache的顶级项目 2015年在国内兴起,代替mr,hive,storm等 2.SparkCore :spark是用来取代Hadoop的? 这种说法是不对的,spark由于只能做计算,所以取代掉Ma…
在大数据领域,只有深挖数据科学领域,走在学术前沿,才能在底层算法和模型方面走在前面,从而占据领先地位. Spark的这种学术基因,使得它从一开始就在大数据领域建立了一定优势.无论是性能,还是方案的统一性,对比传统的Hadoop,优势都非常明显.Spark提供的基于RDD的一体化解决方案,将MapReduce.Streaming.SQL.Machine Learning.Graph Processing等模型统一到一个平台下,并以一致的API公开,并提供相同的部署方案,使得Spark的工程应用领域…
----本节内容------- 1.流式处理系统背景 1.1 技术背景 1.2 Spark技术很火 2.流式处理技术介绍 2.1流式处理技术概念 2.2流式处理应用场景 2.3流式处理系统分类 3.流式处理技术关键技术 3.1流式处理系统管道构建 3.2流式处理系统关键技术 3.3用户行为分析系统介绍 4.问题答疑 5.参考资料 --------------------- 1.流式处理技术 1.1 技术背景 业务驱动技术发展,脱了了业务的技术,最多就是一个研究性的东西,流式处理技术的火爆源于业内…
本节内容 ------------------ · Spark为什么要分区 · Spark分区原则及方法 · Spark分区案例 · 参考资料 ------------------ 一.Spark为什么要分区    分区概念:分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要分区,这个借用…
spark2.3.3安装完成之后启动报错: [hadoop@namenode1 sbin]$ ./start-all.shstarting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-2.3.3-bin-hadoop2.7/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-namenode1.outdatanode2: starting…
给大家分享一下Spark是什么?如何用Spark进行数据分析,对大数据感兴趣的小伙伴就随着小编一起来了解一下吧.     大数据在线学习 什么是Apache Spark? Apache Spark是一个为速度和通用目标设计的集群计算平台. 从速度的角度看,Spark从流行的MapReduce模型继承而来,可以更有效地支持多种类型的计算,如交互式查询和流处理.速度在大数据集的处理中非常重要,它可以决定用户可以交互式地处理数据,还是等几分钟甚至几小时.Spark为速度提供的一个重要特性是其可以在内存…
一.Spark集群基础概念 将DAG划分为多个stage阶段,遵循以下原则: 1.将尽可能多的窄依赖关系的RDD划为同一个stage阶段. 2.当遇到shuffle操作,就意味着上一个stage阶段结束,下一个stage阶段开始 关于RDD中的分区,在默认情况下(也就是未指明分区数的情况) 1.如果从HDFS中读取数据创建RDD,在默认情况下 二.spark架构原理 1.Spark架构原理 Driver 进程                    编写的Spark程序就在Driver上, 由Dr…
版权声明:本博客已经不再更新.请移步到Hadoop技术博客:https://www.iteblog.com https://blog.csdn.net/w397090770/article/details/32699893 作者:过往记忆 | 新浪微博:左手牵右手TEL | 能够转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明博客地址:http://www.iteblog.com/文章标题:<Spark高速入门指南(Quick Start Spark)>本文链接:http://w…
确保HADOOP_CONF_DIR或者YARN_CONF_DIR指向hadoop集群配置文件目录.这些配置用来写数据到hdfs以及连接yarn ResourceManager.(在$SPARK_HOME/conf/spark-env.sh中,添加export HADOOP_CONF_DIR=/home/koushengrui/app/hadoop/etc/hadoop).The configuration contained in this directory will be distribut…
本文主要记录我使用Spark以来遇到的一些典型问题及其解决的方法,希望对遇到相同问题的同学们有所帮助. 1. Spark环境或配置相关 Q: Sparkclient配置文件spark-defaults.conf中,spark.executor.memory和spark.cores.max应该怎样合理配置? A: 配置前,须要对spark集群中每一个节点机器的core和memory的配置有基本了解.比方由100台机器搭建的spark集群中.每一个节点的配置是core=32且memory=128GB…
Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分配时的最小粒度是一个静态的partition. 依据应用对资源的申请需求为其分配静态的partition(s)是Spark支持的最简单的调度策略. 我们已经知道,不同的应用有各自的Spark Context且占用各自的JVM和executor(s).依据Spark Job Scheduling文档的…
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解…
spark 源码分析之十--Spark RPC剖析之TransportResponseHandler.TransportRequestHandler和TransportChannelHandler剖析 TransportResponseHandler分析 先来看类说明: Handler that processes server responses, in response to requests issued from a [[TransportClient]]. It works by tr…
TransportClient类说明 先来看,官方文档给出的说明: Client for fetching consecutive chunks of a pre-negotiated stream. This API is intended to allow efficient transfer of a large amount of data, broken up into chunks with size ranging from hundreds of KB to a few MB. …
一.案例引入 这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计.项目依赖和代码实现如下: <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.12</artifactId> <version>2.4.3</version> </dependency> import org.apac…
基本用法主要掌握一点就行: master slave模式运用:driver 就是master,executor就是slave. 如果executor要想和driver交互必须拿到driver的EndpointRef,通过driver的EndpointRef来调接口访问. driver启动时,会在driver中注册一个Endpoint服务,并暴露自己的ip和端口.executor端生成driver的EndpointRef,就主要需要两个参数就行:driver的host(ip)和port. 导入Ma…
上篇<Spark(四十九):Spark On YARN启动流程源码分析(一)>我们讲到启动SparkContext初始化,ApplicationMaster启动资源中,讲解的内容明显不完整. 本章将针对yarn-cluster(--master yarn –deploy-mode cluster)模式下全面进行代码补充解读: 1)什么时候初始化SparkContext: 2)如何实现ApplicationMaster如何启动executor: 3)启动后如何通过rpc实现executor与dr…
导入: 1)Spark Web UI主要依赖于流行的Servlet容器Jetty实现: 2)Spark Web UI(Spark2.3之前)是展示运行状况.资源状态和监控指标的前端,而这些数据都是由度量系统(MetricsSystem)收集来的: 3)Spark Web UI(spark2.3之后)呈现的数据应该与事件总线和ElementTrackingStore关系紧密,而MetricsSystem是一个向外部提供测量指标的存在 具体Spark UI存储更改可以通过spark issue查看:…
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-core_2.10 的依赖 程序 找了一篇注释比较清楚的博客代码1,一次运行通过 import scala.Tuple2; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
五. Spark角色介绍 Spark是基于内存计算的大数据并行计算框架.因为其基于内存计算,比Hadoop中MapReduce计算框架具有更高的实时性,同时保证了高效容错性和可伸缩性.从2009年诞生于AMPLab到现在已经成为Apache顶级开源项目,并成功应用于商业集群中,学习Spark就需要了解其架构. Spark架构图如下: Spark架构使用了分布式计算中master-slave模型,master是集群中含有master进程的节点,slave是集群中含有worker进程的节点. u …
三. Spark集群安装 3.1 下载spark安装包 下载地址spark官网:http://spark.apache.org/downloads.html 这里我们使用 spark-2.1.3-bin-hadoop2.7版本. 3.2 规划安装目录 /export/servers 3.3 解压安装包 tar -zxvf spark-2.1.3-bin-hadoop2.7.tgz 3.4 重命名目录 mv spark-2.1.3-bin-hadoop2.7 spark 3.5 修改配置文件 配置…
2.spark概述 2.1 什么是spark Apache Spark™ is a unified analytics engine for large-scale data processing. apache的spark是一个针对于大规模数据处理的统一分析引擎 spark是基于内存的计算框架,计算速度非常快,但是这里仅仅只涉及到数据的计算,并没有涉及到数据的存储.后期需要进行数据的计算,这里就可以对接不同的外部数据源(比如hdfs) 2.2 为什么要学习spark 就是由于spark的处理速…