Regularized logistic regression】的更多相关文章

Regularization:Regularized logistic regression without regularization 当features很多时会出现overfitting现象,图上的cost function是没有使用regularization时的costfunction的计算公式 with regularization 当使用了regularization后,使θ1到n不那么大(因为要使J(θ)最小,θ12+θ22.....θn2->0这时θj要趋向于0),这样可以避免…
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% =========== Part 1: Regularized Logistic Regression ============% In this part, you are given a dataset with data points that are not% linearly separabl…
Regularized logistic regression :  plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494,1-0.21371,0.69225,1-0.375,0.50219,1-0.51325,0.46564,1-0.52477,0.2098,1-0.39804,0.034357,1-0.30588,-0.19225,10.016705,-0.40424,10.13191,-0.51389,10.385…
题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经理,你拥有一些芯片在两个不同测试下的测试结果,从这两个测试,你希望确定这些芯片是被接受还是拒绝,为了帮助你做这个决定,你有一些以前芯片的测试结果数据集,从中你可以建一个Logistic回归模型. 编程实现 在这部分训练中,我们将要通过加入正则项提升逻辑回归算法.简而言之,正则化是成本函数中的一个术语…
要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟.例如本程序中个就用到了特征值的6次方来求解. Data To begin, load the files 'ex5Logx.dat' and ex5Logy.dat' into your program. This dataset represents the training set of a logistic regression problem with t…
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accuracies =============% Optional Exercise:% In this part, you will get to try different values of lambda and % see how regularization affects the decisio…
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数…
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分类的逻辑回归,输入x有两种(科目1与科目2),输出有两种(能进入本大学与不能进入本大学).输入测试样例以已经本文最前面贴出分别有两组数据. 我们在进行逻辑回归之前,通常想把数据数据更为直观的显示出来,那么我们根据输入样例绘制图像. function plotData(X, y) %PLOTDATA…