pandas入门之Series】的更多相关文章

一.创建Series 参数 - Series (Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. - data 参数 - index 索引 索引值必须是唯一的和散列的,与数据的长度相同. 默认np.arange(n)如果没有索引被传递. - dtype 输出的数据类型 如果没有,将推断数据类型 - copy 复制数据 默认为false 数组创建 data = ['a','b','c','d','e'] res= pd.Serie…
利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 1.Series 类似于Python的字典,有索引和值 创建Series #不指定索引,默认创建0-N In [54]: obj = Series([1,2,3,4,5]) In [55]: obj Out[55]: 0 1 1 2 2 3 3 4 4 5 dtype: int64 #指定索引 In…
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程.pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块.入门介绍pandas适合于许多不同类型的数据…
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5.2基本功能 5.2.1重新索引5.2.2丢弃指定轴上的项5.2.3索引.选取和过滤5.2.4算术运算和数据对齐5.2.4.1在算术方法中填充值5.2.4.2 DataFrame和Series之间的运算5.2.5函数应用和映射5.2.6排序和排名5.2.7带有重复的轴索引5.3汇总和计算描述性统计5.…
随书练习,第五章  pandas入门2 # coding: utf-8 # In[1]: from pandas import Series,DataFrame import pandas as pd import numpy as np # In[2]: obj = Series(range(5),index=['a','a','b','b','c']) # In[3]: obj #带有重复索引的Series # In[4]: obj.index.is_unique # In[5]: obj[…
随书练习,第五章  pandas入门1 # coding: utf-8 # In[1]: from pandas import Series, DataFrame # In[2]: import pandas as pd # In[3]: import numpy as np # In[4]: obj = Series([4,7,-5,3]) # In[5]: obj # In[6]: obj.values # In[7]: obj.index # In[8]: obj2 = Series([4…
from pandas import Series, DataFrame, Index import numpy as np # 层次化索引 对数据重塑和分组操作很有用 data = Series(np.random.randn(10), index=[['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd'], [1, 2, 3, 1, 2, 3, 1, 2, 2, 3]]) print(data) print(data.index) print(da…
<利用Python进行数据分析·第2版>第五章 pandas入门--基础对象.操作.规则 python引用.浅拷贝.深拷贝 / 视图.副本 视图=引用 副本=浅拷贝/深拷贝 浅拷贝/深拷贝区别 浅拷贝:拷贝对象的副本,但内部子对象还是引用(如果list内还有小list,小list改变会使原对象变化 .copy/python切片/ * 运算 深拷贝:父对象子对象副本全都拷贝,没有引用 .deepcopy 第五章:pandas入门 pandas: Series:类数组数据结构 DataFrame:…
一.pandas的数据结构介绍 1. Series 1.1 Series是由一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据索引构成.仅由一组数据可产生最简单的Series. from pandas import * obj=Series([4,5,-7,6]) print obj print obj[1] 通过索引获取数组值 1.2Series的数组运算会保留索引与值的连接 from pandas import * obj2=Series([4,7,-5,3],index=['d'…
import numpy as np import pandas as pd Series: #创建Series方法1 s1=pd.Series([1,2,3,4]) s1 # 0 1 # 1 2 # 2 3 # 3 4 # dtype: int64 s1.values#array([1, 2, 3, 4], dtype=int64) s1.index#RangeIndex(start=0, stop=4, step=1) #创建Series方法2 s2=pd.Series(np.arange(…
pandas: 基于Numpy构建的数据分析库 pandas数据结构:Series, DataFrame Series: 带有数据标签的类一维数组对象(也可看成字典) values, index 缺失数据检测:pd.isnull(), pd.notnull(), Series对象的实例方法 Series对象本身及其索引都有一个name属性,和pandas其他关键功能关系很密切 DataFrame: 表格型数据结构,列和行都有索引 获取DataFrame列:字典标记方式,或者属性方式(frame2…
pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pandas一起使用的领域广泛,包括学术和商业领域,包括金融,经济学,统计学,分析等.在本教程中,我们将学习PythonPandas的各种功能以及如何在实践中使用它们. pandas安装 安装 pip install pandas 导入 import pandas as pd from pandas im…
本文始发于个人公众号:TechFlow,原创不易,求个关注 上周我们关于Python中科学计算库Numpy的介绍就结束了,今天我们开始介绍一个新的常用的计算工具库,它就是大名鼎鼎的Pandas. Pandas的全称是Python Data Analysis Library,是一种基于Numpy的科学计算工具.它最大的特点就是可以像是操作数据库当中的表一样操作结构化的数据,所以它支持许多复杂和高级的操作,可以认为是Numpy的加强版.它可以很方便地从一个csv或者是excel表格当中构建出完整的数…
Series的创建 ##数据分析汇总学习 https://blog.csdn.net/weixin_39778570/article/details/81157884 # 使用列表创建 >>> import numpy as np >>> import pandas as pd >>> s1 = pd.Series([1,2,3,4]) >>> s1 0 1 1 2 2 3 3 4 dtype: int64 # 查看s1的值和索引 &…
入门介绍 pandas适合于许多不同类型的数据,包括: · 具有异构类型列的表格数据,例如SQL表格或Excel数据 · 有序和无序(不一定是固定频率)时间序列数据. · 具有行列标签的任意矩阵数据(均匀类型或不同类型) · 任何其他形式的观测/统计数据集. 由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境.关于这一点,请自行在网络上搜索获取方法. 关于如何获取pandas请参阅官网上的说明:pandas Installation. 通常情况下,我们可以…
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1). # 引入Series和DataFrameIn [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19…
http://www.cnblogs.com/batteryhp/p/5006274.html pandas是本书后续内容的首选库.pandas可以满足以下需求: 具备按轴自动或显式数据对齐功能的数据结构.这可以防止许多由于数据未对齐以及来自不同数据源(索引方式不同)的数据而导致的常见错误.. 集成时间序列功能 既能处理时间序列数据也能处理非时间序列数据的数据结构 数学运算和简约(比如对某个轴求和)可以根据不同的元数据(轴编号)执行 灵活处理缺失数据 合并及其他出现在常见数据库(例如基于SQL的…
[原]十分钟搞定pandas   本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯上,我们会按下面格式引入所需要的包: 一.            创建对象 可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息. 1.可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引: 2.通过传递…
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq <liangduanqi@shiyejinrong.com> # Date: 2019/2/12 9:26 import numpy as np import pandas as pd s = pd.Series() ''' 创建一个空序列 Series([], dtype: float64) ''' d…
阅读之前假定你已经有了python内置的list和dict的基础.这里内容几乎是官方文档的翻译版本.   概览: ​   原来的文档是在一个地方,那边的代码看起来舒服些   https://www.yuque.com/u86460/dgt6mu/bx0m4g 一个要铭记在新的基本特点是 数据对齐 要点:索引,轴标签,生成实例时传入的数据类型 ​   #*生成:pd.Series(data,index)        data是传入的数据,index是第一列的名称(即标签)      (其他不常用…
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index  . s.values # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 import numpy as npimport pandas as pd>>> s = pd.Series(np.random.rand(5)) >>> print(s,type(…
一.pandas库简介 pandas是一个专门用于数据分析的开源Python库,目前很多使用Python分析数据的专业人员都将pandas作为基础工具来使用.pandas是以Numpy作为基础来设计开发的,Numpy是大量Python数据科学计算库的基础,pandas以此为基础,在计算方面具有很高的性能.pandas有两大数据结构,这是pandas的核心,数据分析的所有任务都离开它们,分别是Series和DataFrame.   二.pandas库的安装 paandas安装较为简单,如果使用An…
import pandas as pd import numpy as np import names ''' 写在前面的话: 1.series与array类型的不同之处为series有索引,而另一个没有;series中的数据必须是一维的,而array类型不一定 2.可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性 ''' # 1.series的创建 ''' (1)由列表或numpy数组创建 默认索引为0到N-1的整数型索引,如s1;…
oc与iloc函数 loc函数 import pandas as pd import numpy # 导入数据 df = pd.read_csv(filepath_or_buffer="D://movie.csv") df_new = df.set_index(["country"]) df_new.loc[list(["Canada"])] # 1 df_new.loc[df_new["duration"]>160]…
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python2.7,书中的代码有一些有错误,我使用自己的2.7版本调通. # coding: utf-8 from pandas import Series, DataFrame import pandas as pd import numpy as np obj = Series([4,7,-9,7]) ob…
pandas是专门为处理表格和混杂数据设计的,NumPy更适合处理统一的数值数组数据. pandas的数据结构: Series:Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 如果只传入一个字典,则结果Series中的索引就是原字典的键(有序排列). pandas的isnull和notnull函数可用于检测缺失数据. DataFrame:DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(…
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1). # 引入Series和DataFrameIn [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19…
pandas中有两个主要的数据结构:Series和DataFrame. [Series] Series是一个一维的类似的数组对象,它包含一个数组数据(任何numpy数据类型)和一个与数组关联的索引. 为了方便理解,可以把Series看着是一个有序字典.其中索引是连续的,从0开始. from pandas import Series,DataFrame series=Series(["Kangkang","Michale","Jane","…
1. 默认的pandas不能读取excel.需要安装xlrd, xlwt才能支持excel的读写 pip install xlrd #添加读取excel功能 pip install xlwt #添加写入excel功能 2.pandas基本数据结构是Series 和 DataFrame Series序列,类似与一维数组: Data Frame则相当于一张二维表格,类似于二维数组,它的每一列都是一个Series,每个series都有一个对应的index,用来标记不同的元素.index的内容可以是数字…
pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据. 具有行列标签的任意矩阵数据(均匀类型或不同类型) 任何其他形式的观测/统计数据集. 由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境.关于这一点,请自行在网络上搜索获取方法. 关于如何获取pandas请参阅官网上的说明:pandas Installation. 通常情况下,我们可以通过pip来执行安装: 或…