论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locnet可以很容易与现有的detection系统结合,但我困惑的是(1)它们的训练的方法,这点论文中没有明确的提到,而仅仅说用迭代的方法进行(2)到底两者的融合后两个网络的结构是怎样呢?可以看做一个多任务的系统,还是存在两个网络呢? 检测方法 输入的候选bounding box(使用selective s…
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网络,用于精确高效的目标检测,相比于基于区域的检测器(Fast/Faster R-CNN),这些检测器重复的在子区域进行数百次计算,而本文在整张图像上进行共享计算.因此,本文提出了基于位置敏感分数图用于解决图像分类中的平移不变性及目标检测中的平移可变性之间的矛盾.将图像分类网络处理为全卷积网络用于目标…
结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong Liu, Ruiping Wang, Shiguang Shan, Xilin Chen. Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships. pu…
Fast RCNN的结构: 先从这幅图解释FAST RCNN的结构.首先,FAST RCNN的输入是包含两部分,image以及region proposal(在论文中叫做region of interest,ROI).Image经过深度网络(deep network)之后得到feature map,然后可以从feature map中找到ROI在其中的投射projection得到每个patch,但论文没有提及怎么在map中寻找对应的patch,估计可以通过位置关系找到(猜想,因为deep Conv…
论文地址:https://arxiv.org/abs/2004.10934v1 github地址:https://github.com/AlexeyAB/darknet 摘要: 有很多特征可以提高卷积神经网络(CNN)的准确性.需要在大型数据集上对这些特征的组合进行实际测试,并需要对结果进行理论证明来验证这些特征的有效性. 某些特征仅在某些模型上运行,并且仅在某些问题上运行,或者仅在小型数据集上运行: 而某些特征(例如批归一化和残差连接)适用于大多数模型,任务和数据集. 我们假设此类通用特征包括…
Ref: https://pjreddie.com/darknet/yolo/ 关注点在于,为何变得更快? 论文笔记:You Only Look Once: Unified, Real-Time Object Detection Ref: https://zhuanlan.zhihu.com/p/24916786?refer=xiaoleimlnote 评论: 基于深度学习方法的一个特点就是实现端到端的检测. 相对于其它目标检测与识别方法(比如Fast R-CNN)将目标识别任务分类目标区域预测…
DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练.从实验结果来看,使用DeepLDA模型最后投影的特征也是很discriminative 的,但是很遗憾没有看到论文是否验证了topmost 的hidden representation 是否也和softmax指导产生的representation一样的discriminative. DeepLDA和一般的deep network唯一不同是它的loss function.两者对比如下: 对于LDA,…
Unsupervised deep embedding for clustering analysis 偶然发现这篇发在ICML2016的论文,它主要的关注点在于unsupervised deep embedding.据我所了解的,Unsupervised 学习是deep learning的一个难点,毕竟deep network这种非常复杂的非线性映射,暂时的未知因素太多,可能在原来的domain有clustering的特征数据经过nonlinear映射之后,就变得不再clustering了.…
生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般包含两个部分:生成器(Generator)和判别器(Discriminator).训练的过程是无监督学习. 先总结一下训练的过程.一般而言,输入是一个一维向量z,它从先验生成.假设现在Generator生成的是图像.我们知道,无监督学习目的是学习数据集中的特征(或者说分布),假设真实的分布为,而Generat…
初次接触Captioning的问题,第一印象就是Andrej Karpathy好聪明.主要从他的两篇文章开始入门,<Deep Fragment Embeddings for Bidirectional Image Sentence Mapping>和<Deep Visual-Semantic Alignments for Generating Image Descriptions>.基本上,第一篇文章看明白了,第二篇就容易了,研究思路其实是一样的.但确实,第二个模型的功能更强大一些…
论文主要介绍一种多人协作的视频事件识别的方法,使用attention模型+RNN网络,最近粗浅地学习了RNN网络,它比较适合用于处理序列的存在上下文作用的数据. NCAA Basketball数据集 这个数据集是作者新构建的,一个事件4秒长度,在论文中共需识别11个事件.而且从训练集子集通过标注人物的bounding box学习了一个multibox detector,来识别所有帧中的人物bounding box. RNN模型 论文使用了RNN模型中的LSTM来处理帧序列.网络的结构如下图,其中…
论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似…
这是期刊论文的版本,不是会议论文的版本.看了论文之后,只能说,太TM聪明了.膜拜~~ 视频的表示方法有很多,一般是把它看作帧的序列.论文提出一种新的方法去表示视频,用ranking function的参数编码视频的帧序列.它使用一个排序函数(ranking function)主要基于这样的假设:帧的appearance的变化与时间相关,如果帧vt+1在vt后面,则定义:此外,假设同一动作的视频帧序列,学习到的排序函数的参数,应该的大致一致的.但实际上,后面的假设并没有给出严格的证明,只能说实验的…
论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联合起来. Two stream结构 视屏可以分成空间与时间两个部分,空间部分指独立帧的表面信息,关于物体.场景等:而时间部分信息指帧间的光流,携带着帧之间的运动信息.相应的,所提出的网络结构由两个深度网络组成,分别处理时间与空间的维度. 可以看到,每个深度网络都会输出一个softmax层,最后会通过…
YOLO的一大特点就是快,在处理上可以达到完全的实时.原因在于它整个检测方法非常的简洁,使用回归的方法,直接在原图上进行目标检测与定位. 多任务检测: 网络把目标检测与定位统一到一个深度网络中,而且可以同时在原图上检测多个物体.步骤总结如下: (1)把图片分割成S*S个方格,假如某个物体的中点落在其中一个方格,那么这个方格就对这个物体负责.这里说的物体的中点应该是指ground truth box中的物体的中心. (2)对于每个格子,预测B个bounding box以及相应的confidence…
目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于0,浪费计算资源. 解决方法: 使用稀疏连接替代稠密结构. 理论依据(Arora):一个概率分布可以用一个大的稀疏的深度神经网络表示,最优的结构的构建通过分析上层的激活状态的统计相关性,并把输出高度相关的神经元聚合.这与生物学中Hebbian法则“有些神经元响应基本一致,即同时兴奋或抑制”一致. 存…
由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来实现.一个FASTER RCNN可以看作是一个RPN + FAST RCNN的组合,两者通过共享CONV LAYERS组合在一起. RPN网络 一张图片先经过CONV LAYERS得到feature map,图片的大小是任意的.然后,使用一个小的滑动网络,它与feature map的一个n*n的小窗…
R-CNN总结 不总结就没有积累 R-CNN的全称是 Regions with CNN features.它的主要基础是经典的AlexNet,使用AlexNet来提取每个region特征,而不再是传统的SIFT.SURF的特征.同时,还利用了AlexNet本来的功能:分类,这时所得的分类结果相当于预分类.最后,由于每个Region是有边界的,使用SVM对其进行分类得到一个score,定位每个物体的bounding box. 预处理: 先看一看AlexNet的网络结构 可以看到,它的输入图像是一个…
Pre: It is MY first time to see quite elegant a solution to seek a subspace for a group of local features. I list two related papers for your reference: “Local Feature Discriminant Projection” and “Binary Set Embedding for Cross-Modal Retrieval”. Thi…
密集轨迹的方法是通过在视频帧上密集地采样像素点并且在追踪,从而构造视频的局部描述子,最后对视频进行分类的方法依然是传统的SVM等方法. 生成密集轨迹: (1)从8个不同的空间尺度中采样,它们的尺度差因子为,而采样的点只需要简单地每间隔W = 5个像素取一个点即可. (2)对于下一个点位置的估计,通过估计密集光流场获得,有以下计算公式: ,其中M是均值过滤器,就是计算的光流场,是Pt周围的点.这样可以对采样点逐帧追踪. (3)为了防止轨迹点的漂移,密集轨迹最多追踪L帧.当在一个W*W的邻域内没有发…
目的: 通过用Mlpconv层来替代传统的conv层,可以学习到更加抽象的特征.传统卷积层通过将前一层进行了线性组合,然后经过非线性激活得到(GLM),作者认为传统卷积层的假设是基于特征的线性可分.而Mlpconv层使用多层感知机,是一个深层的网络结构,可以近似任何非线性的函数.在网络中高层的抽象特征代表它对于相同concept的不同表现具有不变性(By abstraction we mean that the feature is invariant to the variants of th…
题记:最近在做LLL(Life Long Learning),接触到了SSL(Semi-Supervised Learning)正好读到了谷歌今年的论文,也是比较有点开创性的,浅显易懂,对比实验丰富,非常适合缺乏基础科学常识和刚刚读研不会写论文的同学读一读,触类旁通嘛. 这篇论文思路等等也非常适合刚刚开始做学术时候写文论参考使用,你看,它有创造性(半监督学习用在了目标检测上),理论基础扎实(体现在专业词汇丰富,也介绍了其他相关论文,做个小综述论文都够了),工作量够够的(大量的对比试验),实验效果…
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题.本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling.二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行学习来增强空间采样位置.新模型可以取代CNN中的原有模型,可以通过反向传播算法进…
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构,关注度较少的训练过程对于检测器的成功检测也是十分重要的.本文发现,检测性能主要受限于训练时,sample level,feature level,objective level的不平衡问题.为此,提出了Libra R-CNN,用于对目标检测中平衡学习的简单有效的框架.主要包含三个创新点:(1)Io…
论文原址:https://arxiv.org/abs/1901.03278 github:code will be available 摘要 区域anchor是现阶段目标检测方法的重要基石.大多数好的目标检测算法都依赖于anchors机制,通过预定义好的尺寸及大小在空间位置上进行均匀的采样.本文提出了一个可替换的解决方案-Guided Anchoring,该方法利用语义特征对anchor进行引导.该方法预测感兴趣目标物的中心的同时预测不同位置处的长宽尺寸及比例大小.在得到anchor的形状之后,…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
论文原址:https://arxiv.org/abs/1509.04874 github:https://github.com/CaptainEven/DenseBox 摘要 本文先提出了一个问题:如何将全卷积网络应用到目标检测中去?本文提出DenseBox,一个集成的FCN 框架可以直接在图像的位置上预测出目标物的边框及类别.本文两方面贡献:(1)FCN可以用于检测不同的目标(2)在多任务学习过程中结合landmark定位可以进一步提高对目标的检测的准确性. 介绍 本文只关注一个问题,即如何将…
论文链接: https://arxiv.org/pdf/1512.02325.pdf 代码下载: https://github.com/weiliu89/caffe/tree/ssd Abstract We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of boun…
论文链接: https://arxiv.org/pdf/1506.02640.pdf 代码下载: https://github.com/gliese581gg/YOLO_tensorflow Abstract We present YOLO, a new approach to object detection.Prior work on object detection repurposes classifiers to perform detection. Instead, we frame…
论文链接: https://arxiv.org/pdf/1504.08083.pdf 代码下载: https://github.com/rbgirshick/fast-rcnn Abstract Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy #相比于之前的…