数据降维-LDA线性降维】的更多相关文章

1.什么是LDA? LDA线性判别分析也是一种经典的降维方法,LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术.LDA的思想可以用一句话概括,就是“*投影后类内方差最小,类间方差最大*”. 什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 可能还是有点抽象,我们先看看最简单的情况.假设我们有两类数据分别为红色和蓝色,如…
已迁移到我新博客,阅读体验更佳LDA && NCA: 降维与度量学习 代码实现放在我的github上:click me 一.Linear Discriminant Analysis(LDA) 1.1 Rationale         线性判别分析(LDA)是一种监督学习的分类和降维的方法,但更多是被用来降维.LDA的原理是让投影后同一类中数据的投影点之间尽可能地靠近,而类不同类别中数据的类别中心之间的距离尽可能远,用一句话概括就是"投影后类内方差最小,类间方差最大".…
一.因子分析 因子分析是将具有错综复杂关系的变量(或样本)综合为少数几个因子,以再现原始变量和因子之间的相互关系,探讨多个能够直接测量,并且具有一定相关性的实测指标是如何受少数几个内在的独立因子所支配,并且在条件许可时借此尝试对变量进行分类. 因子分析的基本思想 根据变量间相关性的大小把变量分组,使得同组内的变量之间的相关性(共性)较高,并用一个公共因子来代表这个组的变量,而不同组的变量相关性较低(个性). 因子分析的目的¶ 因子分析的目的,通俗来讲就是简化变量维数.即要使因素结构简单化,希望以…
LDA, Linear Discriminant Analysis,线性判别分析.注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别. 1.引入 上文介绍的PCA方法对提取样本数据的主要变化信息非常有效,而忽略了次要变化的信息.在有些情况下,次要信息可能正是把不同类别区分开来的分布方向.简单来说,PCA方法寻找的是数据变化的主轴方向,而判别分析寻找的是用来有效分类的方向.二者侧重点不同.在图1.1可以看出变化最大的方向不一定能最好的区分不同类别. 图1.1…
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点,如何用一个超平面(直线/平面的高维推广)对所有样本进行恰当的表达? 事实上,若存在这样的超平面,那么它大概应具有这样的性质: 最近重构性 : 样本点到这个超平面的距离都足够近: 最大可分性:样本点在这个超平面上的投影能尽可能分开. 一般的,将特征量从n维降到k维: 以最近重构性为目标,PCA的目标…
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LDA线性判别分析(Linear Discriminant Analysis)也是一种特征提取.数据压缩技术.在模型训练时候进行LDA数据处理可以提高计算效率以及避免过拟合.它是一种有监督学习算法. 与PCA主成分分析(Principal Component Analysis)相比,LDA是有监督数据压…
LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的类别 LDA二维示意图.用'+'表示正类"-"表示负类,两个投影,实心三角形和圆表示投影中心 二分类: 给定数据集 :第类的样本集合 :第类的均值向量 :第类的协方差矩阵 将数据投影在直线上,则两类样本的中心点在直线上的投影分别为和 将所有的样本点投影到直线上之后,两类样本的协方差为 和…
一 Unsupervised Learning 把Unsupervised Learning分为两大类: 化繁为简:有很多种input,进行抽象化处理,只有input没有output 无中生有:随机给一个input,自动画一张图,只有output没有input 二 Clustering 有一大堆image ,把他们分为几大类,给他们贴上标签,将不同的image用相同的 cluster表示. 也面临一个问题,要有多少种cluster呢? 有两种clustering的方法: 2.1 K-means(…
线性判别分析LDA详解 1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合. 2 二分类问题    原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距…
感谢皮果提的文章: http://blog.csdn.net/itplus/article/details/12038441 http://blog.csdn.net/itplus/article 皮果提是个大牛! 本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了看,觉得数学味挺浓,一时引起了很大的兴趣:再看看,就有整理一份资料的冲动了.网上查到…
接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集和测试集. 2.使用一层隐藏层的简单网络,试下来用当前这组超参数收敛较快,准确率也可以. 3.激活函数使用relu来引入非线性因子. 4.原本想使用如下方式来动态更新lr,但是尝试下来效果不明显,就索性不要了. def learning_rate(epoch): if epoch < 200: re…
源代码: #-*- coding: UTF-8 -*- from numpy import * import numpy def lda(c1,c2): #c1 第一类样本,每行是一个样本 #c2 第二类样本,每行是一个样本 #计算各类样本的均值和所有样本均值 m1=mean(c1,axis=0)#第一类样本均值 m2=mean(c2,axis=0)#第二类样本均值 c=vstack((c1,c2))#所有样本 m=mean(c,axis=0)#所有样本的均值 #计算类内离散度矩阵Sw n1=c…
特征选择 男女身高 男女抽烟 先验分布 熵 衡量系统的不确定性 属性的价值 降低了不确定性 降低的幅度越高越好 主成分分析 旋转是的数据间的correlation消失掉 Q是正交阵 七长八短,长宽相关性不好,信息丢失了很多. 线性判别分析 两种颜色投影重叠,分类问题就很尴尬,没法处理 PCA不考虑Label 是无监督的 有标签的数据用LDA. 降维的时候保留类的区分信息 可分性 迄今为止,都是二分类问题…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-learn中, LDA类是sklearn.discriminant_analysis.LinearDiscriminantAnalysis.那既可以用于分类又可以用于降维.当然,应用场景最多的还是降维.和PCA类似,LDA降维基本也不用调参,只需要指定降维到的维数即可. 2. LinearDiscrim…
PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维.下面的代码分别实现了两种降维方式: print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis iris = dat…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
PCA主成分分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 用鸢尾花数据集 展示 降维的效果 from sklearn.datasets import load_iris iris = load_iris() data = iris.data # 特征值 target = iris.target # 目标值 # 绘制平面散点图 plt.scatter(data[:,0],data[:,1],c…
判别分析(discriminant analysis)是一种分类技术.它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类.判别分析的方法大体上有三类,即Fisher判别.Bayes判别和距离判别. Fisher判别思想是投影降维,使多维问题简化为一维问题来处理.选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值.对这个投影轴的方向的要求是:使每一组内的投影值所形成的组内离差尽可能小,而不同组间的投影值所形成的类间离差尽可能大. Bayes判别…
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如上,不能满足上式的. 二.协方差矩阵 方差(Variance)是度量一组数据分散的程度.方差是各个样本与样本均值的差的平方和的均值. 协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度.如果两个变量的协方差为0,则统计学上认为二者线性无关.而方差是协方差的…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
LDA 降维原理 前面对 LDA 作为作为分类器 有详细推导, 其核心就是 贝叶斯公式, 已知全概率, 求(条件概率)最大先验概率, 类似的问题. 而 LDA 如果作为 降维 的原理是: a. 将带上标签的数据点, 通过投影, 投影到维度更低的空间中, b. 使得投影后的点, 同类别会"内聚", 不同类别会 "分隔开", 类似写代码的"高内聚, 低耦合". 注意是要 带标签的点, 不同于 PCA 值考虑 X 降维, y 不考虑. 直观上来理解还是…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
一.LDA算法 基本思想:LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 浅显来讲,LDA方法的考虑是,对于一个多类别的分类问题,想要把它们映射到一个低维空间,如一维空间从而达到降维的目的,我们希望映射之后的数据间,两个类别之间“离得越远”,且类别内的数据点之间“离得越近”,这样…
讲授数据降维原理,PCA的核心思想,计算投影矩阵,投影算法的完整流程,非线性降维技术,流行学习的概念,局部线性嵌入,拉普拉斯特征映射,局部保持投影,等距映射,实际应用 大纲: 数据降维问题PCA的思想最佳投影矩阵向量降维向量重构实验环节实际应用 数据降维问题: 为什么需要数据降维?①高维数据不易处理,机器学习和模式识别中高维数据不太好处理,如人脸图像32*32,1024维向量,维度太高效率低.影响精度.②不能可视化,1024维是无法可视化的.③维数灾难问题,开始增加维度算法预测精度会提升,但再继…
数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of data with neural networks,作者就是鼎鼎有名的Hinton,这篇文章也标志着deep learning进入火热的时代. 今天花了点时间读了下这篇文章,下面是一点笔记: 多层感知机其实在上世纪已经被提出来了,但是为什么它没有得到广泛应用呢?其原因在于对多层非线性网络进行权值优化时…
2013 基于数据降维和压缩感知的图像哈希理论与方法 唐振军 广西师范大学 多元时间序列数据挖掘中的特征表示和相似性度量方法研究 李海林 华侨大学       基于标签和多特征融合的图像语义空间学习技术研究 管子玉 西北大学       非负矩阵分解中维数约减问题研究 赵金熙 南京大学 58     大数据环境下高维数据流挖掘算法及应用研究 冯林 大连理工大学       面向高维信息的非线性维数约减问题研究 高小方 山西大学       基于支持向量机的增量式强化学习技术及其应用研究 伏玉琛…
数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转变为低维的数据, 这样我们存储数据的矩阵的列就减少了, 那么我们需要存储的数据就减少了 数据可视化 数据可视化是非常重要的, 通过可视化数据可以发现数据的规律, 但是大多数时候我们到的数据是高维度的, 可视化很困难, 采用数据降维可以将数据降到二维进行数据可视化 加快机器学习算法的速度 维度少了程序…
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结.LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理. 在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),…
降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------------- 主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清.今天终于把整个过程整理出来,方便自己学习,也和大家交流. 提出背景 以二维特征为例,两个特征之间可能存在线性关系的(例如这两个特征分别是运…