Hadoop MapReduce InputFormat基础】的更多相关文章

有时候你可能想要用不同的方法从input data中读取数据.那么你就需要创建一个自己的InputFormat类.   InputFormat是一个只有两个函数的接口.   public interface InputFormat<K, V> { InputSplit[] getSplits(JobConf job, int numSplits) throws IOException; RecordReader<K, V> getRecordReader(InputSplit sp…
InputFormat import java.io.IOException; import java.util.List; /** * InputFormat describes the input-specification for a Map-Reduce job. * * The Map-Reduce framework relies on the InputFormat of the job to: * * Validate the input-specification of the…
在MR程序的开发过程中,经常会遇到输入数据不是HDFS或者数据输出目的地不是HDFS的,MapReduce的设计已经考虑到这种情况,它为我们提供了两个组建,只需要我们自定义适合的InputFormat和OutputFormat,就可以完成这个需求,这里简单的介绍一个从MongoDB中读数据,并写出数据到MongoDB中的一种情况,只是一个Demo,所以数据随便找的一个. 一.自定义InputFormat MapReduce中Map阶段的数据输入是由InputFormat决定的,我们查看org.a…
从分治算法说起 要说 Hadoop MapReduce 就不得不说分治算法,而分治算法其实说白了,就是四个字 分而治之 .其实就是将一个复杂的问题分解成多组相同或类似的子问题,对这些子问题再分,然后再分.直到最后的子问题可以简单得求解. 要具体介绍分治算法,那就不得不说一个很经典的排序算法 -- 归并排序.这里不说它的具体算法代码,只说明它的主要思想.而归并排序的思想正是分治思想. 归并排序采用递归的方式,每次都将一个数组分解成更小的两个数组,再对这两个数组进行排序,不断递归下去.直到分解成最简…
不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.flowsum; import java.io.DataInput;import java.io.DataOutput;import java.io.IOException; import org.apache.hadoop.io.Writable;import org.apache.hadoop.io.WritableCompa…
mapreduce实现一个简单的单词计数的功能. 一,准备工作:eclipse 安装hadoop 插件: 下载相关版本的hadoop-eclipse-plugin-2.2.0.jar到eclipse/plugins下. 二,实现: 新建mapreduce project map 用于分词,reduce计数. package tank.demo; import java.io.IOException; import java.util.StringTokenizer; import org.apa…
一直在搞spark,也没时间弄hadoop,不过Hadoop基本的编程我觉得我还是要会吧,看到一篇不错的文章,不过应该应用于hadoop2.0以前,因为代码中有  conf.set("mapred.job.tracker", "192.168.1.2:9001");新框架中已改为 Yarn-site.xml 中的 resouceManager 及 nodeManager 具体配置项,新框架中历史 job 的查询已从 Job tracker 剥离,归入单独的mapre…
开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
MapReduce编程基础 1. WordCount示例及MapReduce程序框架 2.  MapReduce程序执行流程 3.  深入学习MapReduce编程(1) 4. 参考资料及代码下载 <1>. WordCount示例及MapReduce程序框架  首先通过一个简单的程序来实际运行一个MapReduce程序,然后通过这个程序我们来哦那个结一下MapReduce编程模型. 下载源程序:/Files/xuqiang/WordCount.rar,将该程序打包成wordcount.jar下…
@ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapReduce运行机制 过程描述 第一阶段:作业提交(图1-4步) 第二阶段:作业初始化(图5-7步) 第三阶段:任务的分配(图8) 第四阶段:任务的执行(图9-11) 第五阶段:作业完成 Tips 知识点:进度和状态更新 4.MR各组成部分工作机制原理 4.1概览: 4.2 MapTask工作机制 4.…
Hadoop 涉及的知识点如下图所示,本文将逐一讲解: 本文档参考了关于 Hadoop 的官网及其他众多资料整理而成,为了整洁的排版及舒适的阅读,对于模糊不清晰的图片及黑白图片进行重新绘制成了高清彩图. 目前企业应用较多的是Hadoop2.x,所以本文是以Hadoop2.x为主,对于Hadoop3.x新增的内容会进行说明! 二.MapReduce 1. MapReduce 介绍 MapReduce思想在生活中处处可见.或多或少都曾接触过这种思想.MapReduce的思想核心是"分而治之"…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
其实啊,spilt是,控制Apache Hadoop Mapreduce的map并发任务数,详细见http://www.cnblogs.com/zlslch/p/5713652.html map,是mapper代码 partitioner,自定义分组,详细见http://www.cnblogs.com/zlslch/p/5713701.html sort,自定义排序,详细见http://www.cnblogs.com/zlslch/p/5713701.html reduce,是reducer代码…
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGroupingComparator 在0.20.0以后使用是 job.setPartitionerClass(Partitioner p); job.setSortComparatorClass(RawComparator c); job.setGroupingComparatorClass(RawCom…
摘要:OpenStack与Hadoop被誉为继Linux之后最有可能获得巨大成功的开源项目.这二者如何结合成为更猛的新方案?业内给出两种答案:Hadoop跑在OpenStack上或OpenStack部署到Hadoop上.Steve Markey教授重点介绍了后者. 这两种答案都有企业在实践.“Hadoop跑在OpenStack上”可以参考<Project Savanna:让Hadoop运行在OpenStack之上>,“OpenStack部署到Hadoop上”则重点可查阅本文. 随着企业开始同时…
简单介绍 官方给出的介绍是hadoop MR是一个用于轻松编写以一种可靠的.容错的方式在商业化硬件上的大型集群上并行处理大量数据的应用程序的软件框架. MR任务通常会先把输入的数据集切分成独立的块(可以看成是一个较小数据集),然后这些块由map任务以完全并行的方式的去处理.map任务输出的结果排完序之后会交给reduce去处理得到最终结果.MR负责调度,监听并重新执行失败的任务,它的输入和输入都存储在hdfs上. MR框架由一个主节点 ResourceManager, 一个或多个从节点 Node…
Mapreduce的运算过程为两个阶段: 第一个阶段的map task相互独立,完全并行: 第二个阶段的reduce task也是相互独立,但依赖于上一阶段所有map task并发实例的输出: 这些task任务分布在多台机器运行,它的运行管理是有一个master负责,这个master由yarn负责启动,那么yarn如何知道启动多少个map task进程去计算呢? 下面概述一下Mapreduce的执行流程: 1.客户端首先会访问hdfs的namenode获取待处理数据的信息(文件数及文件大小),形…
Hadoop,mapreduce 介绍 59888745@qq.com 大数据工程师是在Linux系统下搭建Hadoop生态系统(cloudera是最大的输出者类似于Linux的红帽), 把用户的交易或行为信息通过HDFS(分布式文件系统)等存储用户数据文件,然后通过Hbase(类似于NoSQL)等存储数据,再通过Mapreduce(并行计算框架)等计算数据,然后通过hiv或pig(数据分析平台)等分析数据,最后按照用户需要重现出数据. Hadoop是一个由Apache基金会所开发的开源分布式系…
不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先根据数据集,分别统计出不同犯罪类别在周时段内发生犯罪次数和不同区域在周时段内发生犯罪的次数. 2.然后根据第一步的输出结果,再按日期统计出每天每种犯罪类别在每个区域发生的犯罪次数. 3.将前两步的输出结果,按需求插入数据库,便于对犯罪数据的分析. 程序开发 我们要编写5个文件: 编写基类,MapRe…
最近一段时间一直在接触关于hadoop方面的内容,从刚接触时的一片空白,到现在也能够说清楚一些问题.这中间到底经历过什么只怕也就是只有经过的人才会体会到吧.前几天看到有个人问“学hadoop需要什么基础”,这个问题好像至今还没好好细想过,可能是因为身边有大神在带着我学习hadoop的缘故,也就没想过这样的一个简单的问题. 我们目前在用的hadoop版本并不是原生态的版本,我们在用的是国内的一款商业发行版,叫DKhadoop.大快搜索推出的一款原生态开发的Hadoop集成生态环境.从使用的效果上看…
不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; /** * 学习成绩读写类 * 数据格式参考:19020090017 小讲 90 99 100 89 95 * @aut…
推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapreduce/05.%E6%98%8E%E6%98%9F%E5%BE%AE%E5%8D%9A%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90?dir=1&filepath=bigdata%2Fhadoop%2Fmapreduce%2F05.%E6%98%8E%E6%98%9F%E5%…
这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable…
来源:http://blog.csdn.net/liuxiaochen123/article/details/8786715?utm_source=tuicool 2013-04-11 10:15 4941人阅读 评论(2) 收藏 举报   目录(?)[-] 1MapReduce理论简介 11 MapReduce编程模型 12 MapReduce处理过程 2运行WordCount程序 21 准备工作 22 运行例子 23 查看结果 3WordCount源码分析 31 特别数据类型介绍 32 旧的…
期望目的 基于VMware workstation 10.0 + CentOS 7 + hadoop 3.2.0,在虚拟机上搭建一套Hadoop集群环境,总共包含4个节点,其中1个master节点.3个slave节点. 操作过程 步骤一 创建虚拟机.安装系统 需提前在计算机上安装好VMware workstation 10,下载好CentOS 7的镜像文件.具体步骤不再赘述,这里讲几个安装系统过程中需要注意的地方: 选择最小化安装 默认网络是关闭的无法上网,安装时设置网络打开 Vmware To…
https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详解 每个Mapper任…
1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32…
原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) 提交了一个 job,job 的信息会发送到 Job Tracker 中,Job Tracker 是 Map-reduce 框架的中心,他需要与集群中的机器定时通信 (heartbeat), 需要管理哪些程序应该跑在哪些机器上,需要管理所有 job 失败.重启等操作. TaskTracker 是 Ma…
不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import java.util.regex.Pattern;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.FileSystem;impor…
不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce.ParseTVDataCompressAndCounter; import java.net.URI; import java.util.List;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Co…