ICP(迭代最近点)算法】的更多相关文章

标签: 图像匹配ICP算法机器视觉 2015-12-01 21:09 2217人阅读 评论(0) 收藏 举报 分类: Computer Vision(27) 版权声明:本文为博主原创文章,未经博主允许不得转载. 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正. ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际是要找到从坐标系1到坐标系2的一个刚性变换. ICP算法本质上是基于最小二乘法的最优配准方法.该算法重复进行选…
原文网址:https://www.cnblogs.com/sddai/p/6129437.html.转载主要方便随时可以查看,如有版权要求请及时联系. 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正. ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际是要找到从坐标系1到坐标系2的一个刚性变换. ICP算法本质上是基于最小二乘法的最优配准方法.该算法重复进行选择对应关系点对, 计算最优刚体变换,直到满足正确配准的收敛精…
研究生课程系列文章参见索引<在信科的那些课> 基本原理 假定已给两个数据集P.Q, ,给出两个点集的空间变换f使他们能进行空间匹配.这里的问题是,f为一未知函数,而且两点集中的点数不一定相同.解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points Algorithm). 基本思想是:根据某种几何特性对数据进行匹配,并设这些匹配点为假想的对应点,然后根据这种对应关系求解运动参数.再利用这些运动参数对数据进行变换.并利用同一几何特征,确定新的对应关系,重复上述…
图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题.具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的. 一个经典的应用是场景的重建,比如说一张茶几上摆了很多杯具,用深度摄像机进行场景的扫描,通常不可能通过一次采集就将场景中的…
参考博客:http://www.cnblogs.com/21207-iHome/p/6034462.html 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正. ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际是要找到从坐标系1到坐标系2的一个刚性变换. ICP算法本质上是基于最小二乘法的最优配准方法.该算法重复进行选择对应关系点对, 计算最优刚体变换,直到满足正确配准的收敛精度要求. ICP 算法的目的是要找到待配准…
临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下 主要是了解思想,就不写具体的计算公式之类的了 (一) ICP算法(Iterative Closest Point迭代最近点) ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1 如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的 (图1) ICP是改进自对应点集配准算法的 对应点集配准…
本周主要任务01:利用PCL库函数,ICP融合两个角度的点云 任务时间:2014年9月8日-2014年9月14日 任务完成情况:可以使用键盘交互,显示每次ICP迭代结果 任务涉及基本方法: 1.PCL库中ICP相关函数,ICP交互迭代 参考官方教程 http://pointclouds.org/documentation/tutorials/interactive_icp.php#interactive-icp 程序文件: 1.icpInteractive.cpp //icpInteractiv…
              1.前言                                a.对于工程问题,一般描述为:从一些测量值(观测量)x 中估计参数 p?即x = f(p),                              其中,x为测量值构成的向量,参数p为待求量,为了让模型能适应一般场景,这里p也为向量.                              这是一个函数求解问题,可以使用Guass-Newton法进行求解,LM算法是对Newton法的改进.…
1. 幂迭代算法(简称幂法) (1) 占优特征值和占优特征向量 已知方阵\(\bm{A} \in \R^{n \times n}\), \(\bm{A}\)的占优特征值是量级比\(\bm{A}\)所有其他特征值都大的特征值\(\lambda\),若这样的特征值存在,则与\(\lambda\)相关的特征向量我们称为占优特征向量. (2) 特征值的性质 如果一个向量反复与同一个矩阵相乘,那么该向量会被推向该矩阵的主特征向量的方向.如下面这个例子所示: import numpy as np def p…
1. 幂迭代算法(简称幂法) (1) 占优特征值和占优特征向量 已知方阵\(\bm{A} \in \R^{n \times n}\), \(\bm{A}\)的占优特征值是比\(\bm{A}\)的其他特征值(的绝对值)都大的特征值\(\lambda\),若这样的特征值存在,则与\(\lambda\)相关的特征向量我们称为占优特征向量. (2) 占优特征值和占优特征向量的性质 如果一个向量反复与同一个矩阵相乘,那么该向量会被推向该矩阵的占优特征向量的方向.如下面这个例子所示: import nump…
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据的配准.点云的配准有手动配准依赖仪器的配准,和自动配准,点云的自动配准技术是通过一定的算法或者统计学规律利用计算机计算两块点云之间错位,从而达到两块点云自动配准的效果,其实质就是把不同的坐标系中测得到的…
1.综述:迭代最近点算法综述,介绍了svd分解和四元数法,其中 svd法:http://blog.csdn.net/kfqcome/article/details/9358853 四元数法:http://www.doc88.com/p-2744480500404.html 说白了就是 2. 其他变种 PLicp 参见libicp.csm-master里面有个mbicp GAicp 遗传算法避免局部极小值 IDC 3.Slam相关 轻量级CoreSlam蒙特卡罗搜索,sdl显示界面 SSM:谱方法…
一.环境需求 二.怎样使用 三.本地化 3.1扩展卡尔曼滤波本地化 3.2无损卡尔曼滤波本地化 3.3粒子滤波本地化 3.4直方图滤波本地化 四.映射 4.1高斯网格映射 4.2光线投射网格映射 4.3k均值物体聚类 4.4圆形拟合物体形状识别 五.SLAM 5.1迭代最近点匹配 5.2EKF SLAM 5.3FastSLAM 1.0 5.4FastSLAM 2.0 5.5基于图的SLAM 六.路径规划 6.1动态窗口方式 6.2基于网格的搜索 迪杰斯特拉算法 A*算法 势场算法 6.3模型预测…
​蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云配准是计算机视觉的关键研究问题之一,在多领域工程应用中具有重要应用,如逆向工程.SLAM.图像处理和模式识别等.点云配准的目的是求解出同一坐标下不同姿态点云的变换矩阵,利用该矩阵实现多视扫描点云的精确配准,最终获取完整的3D数字模型.场景.本质上,关于六自由度(旋转和平移)的3D点云配准问题是典型的…
(1)正态分布变换进行配准(normal Distributions Transform) 介绍关于如何使用正态分布算法来确定两个大型点云之间的刚体变换,正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优匹配,因为其在配准的过程中不利用对应点的特征计算和匹配,所以时间比其他方法比较快, 对于代码的解析 /* 使用正态分布变换进行配准的实验 .其中room_scan1.pcd room_scan2.pcd这些点云包含同一房间360不同视角的扫描数据…
目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Eigen:旋转向量和欧拉角:四元数:相似.仿射.射影变换:实践-Eigen几何模块:可视化演示: 第4讲 李群与李代数 李群李代数基础:指数与对数映射:李代数求导与扰动模型:实践-Sophus:相似变换群与李代数:小结: 第5讲 相机与图像 相机模型:图像:实践-图像的存取与访问:实践-拼接点云: 第…
本次分享聚焦于高精地图在自动驾驶中的应用,主要分为以下两部分: 1. 高精地图 High Definition Map 拓扑地图 Topological Map / Road Graph 3D栅格地图 3D Grid Map 2. 定位 Localization 一. 高精地图 High Definition Map ★ 拓扑地图 Topological Map / Road Graph 1. 传统地图 我们先看下传统地图,这是从百度地图里截出来的图,从这张图我们可以看到很多信息: 拓扑信息:我…
原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优.本文介绍的是另一种比较好的配准算法,NDT配准.这个配准算法耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来. 绪论: 采样: 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不…
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Algorithm Implementations. ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优.PCL点云库已经实现了多种…
Icp基本思想参考资料:http://www.cnblogs.com/jian-li/articles/4945676.html ,包括点-点,点-面的各种icp变种 Icp算法就是两个点云X.Y之间的匹配,最小化均方误差 其中R是旋转矩阵,t是平移矩阵. 方法: 搜索策略   找到最近点,使用kd-tree,参考资料 http://www.cnblogs.com/xy123001/p/5831116.html http://blog.sina.com.cn/s/blog_6f611c30010…
ACM算法分类:http://www.kuqin.com/algorithm/20080229/4071.html 一: 拟合一个平面:使用SVD分解,代码里面去找吧 空间平面方程的一般表达式为: Ax+By+Cz+D=0; 则有: 平面法向量为n=(A,B,C). 第一种方法: 对于空间中n个点(n3) 空间中的离散点得到拟合平面,其实这就是一个最优化的过程.即求这些点到某个平面距离最小和的问题.由此,我们知道一个先验消息,那就是该平面一定会过众散点的平均值.接着我们需要做的工作就是求这个平面…
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的…
1.连通分量是什么? 首先需要了解什么是连通图.无向连通图.极大连通子图等概念,这些概念都来自数据结构-图,这里简单介绍一下. 下图是连通图和非连通图,都是无向的,这里不扩展有向图: 连通分量(connected component):无向图中的极大连通子图(maximal connected subgraph)称为原图的连通分量. 极大连通子图: 1.连通图只有一个极大连通子图,就是它本身.(是唯一的) 2.非连通图有多个极大连通子图.(非连通图的极大连通子图叫做连通分量,每个分量都是一个连通…
迭代硬阈值类(IHT)算法总结 斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" 迭代硬阈值(Iterative Hard Thresholding)算法是求解基于 \({\ell _0}\) 范数非凸优化问题的重要方法之一,在稀疏估计和压缩感知重构等领域应用较多.IHT最初由Blumensath, Thomas等人提出,后来许多学者在IHT算法的基础上不断发展出一些改进算法…
缺月挂疏桐,漏断人初静. 谁见幽人独往来,缥缈孤鸿影. 惊起却回头,有恨无人省. 拣尽寒枝不肯栖,寂寞沙洲冷.---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" ISTA算法和FISTA算法是求解线性逆问题的经典方法,隶属于梯度类算法,也常用于压缩感知重构算法中,隶属于梯度类算法,这次将这2中算法原理做简单分析,并给出matlab仿真实验,通过实验结果来验证算法性能. 1. 引言 对于一个基本的线性逆问题: \[{\bf{y} = \bf{Ax} + \bf{w}} \qua…
原文链接:http://ghx0x0.github.io/2014/12/30/NDT-match/ 目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优.本文介绍的是另一种比较好的配准算法,NDT配准.这个配准算法耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来. 绪论: 采样: 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不均匀: 一种方法是将空间划分格子,在每个格子…
原文链接 背景 两个点云要注册在一块,一般分两个步骤:先做一个大致的对齐,也就是所谓的初始注册,一般可以通过一些可靠的点对来计算得到(如图3所示):然后在初始注册的基础上进行精细注册,提升注册的精度(如图4所示).精细注册的方法,一般采用ICP算法,也就是最近点迭代的方法. ICP算法总览 下面先总的介绍一下ICP算法,之后再详细介绍里面的一些重要步骤. 算法输入是两片有部分重叠的点云a和b,并且已经初始注册好了,输出是ICP注册的刚体变换T: 1. 对b进行点采样,得到采样点集s 2. 在a中…
1.道格拉斯-普克算法(Douglas–Peucker) 道格拉斯-普克算法(Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法.迭代适应点算法.分裂与合并算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法.该算法的原始类型分别由乌尔斯·拉默(Urs Ramer)于1972年以及大卫·道格拉斯(David Douglas)和托马斯·普克(Thomas Peucker)于1973年提出,并在之后的数十年中由其他学者予以完善. 算法的基本思路是:对每一条曲线的…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensemble learning)通过组合多个基分类器(base classifier)来完成学习任务,颇有点"三个臭皮匠顶个诸葛亮"的意味.基分类器一般采用的是弱可学习(weakly learnable)分类器,通过集成学习,组合成一个强可学习(strongly learnable)分类器.所谓…