现有分布式模型训练的模式 分布式SGD 并行SGD: 大规模训练中,一次的最长时间取决于最慢的机器 异步SGD: 不同步的数据,有可能导致权重更新向着未知方向 并行多模型 :多个集群训练不同的模型,再组合最终模型,但是会消耗inference运行时 蒸馏:流程复杂 student训练数据集的选择 unlabeled的数据 原始数据 留出来的数据 协同蒸馏 using the same architecture for all the models; using the same dataset…
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Goo…
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 d…
Principles of training multi-layer neural network using backpropagation http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate…
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify images of digits. Neural networks with multiple hidden layers can be useful for solving classification problems with complex data, such as images. Each l…
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for the sigmoid function can be computed as: where: 4.Random initialization randInitializeWeights.m function W = randInitializeWeights(L_in, L_out) %RANDIN…
今天看到一篇1988年的老文章谈到了训练一个简单网络是NPC问题[1].也就是下面的网络结构,在线性激活函数下,如果要找到参数使得输入数据的标签估计准确,这个问题是一个NPC问题.这个文章的意义在于宣判了找简单的神经网络来降低计算难度是行不通的,同时找多项式内求解的算法也不用再考虑了. 站在时代的背景上,这篇文章反应了算力不足时期神经网络的尴尬位置,告诉我们算力设备是搞神经网络不可缺少的资源. [1] A. Blum and R. L. Rivest, "Training a 3-Node Ne…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visualizing high-dimensional input dataset - 输入样本内隐含的空间结构 . Example : Word Embeddings in NLP - text word文本词语串内隐含的空间结构 . Example : Paragraph Vectors in NLP…
Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http://jxgu.cc/blog/recent-advances-in-RNN.html    References Robert Dionne Neural Network Paper Notes Baisc Improvements 20170326 Learning Simpler Language…
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, 2016 BY FJODOR VAN VEEN   With new neural network architectures popping up every now and then, it's hard to keep track of them all. Knowing all the a…
Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior knowledg…
Convolutional Neural Networks are great: they recognize things, places and people in your personal photos, signs, people and lights in self-driving cars, crops, forests and traffic in aerial imagery, various anomalies in medical images and all kinds…
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech synthesis,music generation是基于模型输出序列数据:如time series prediction,video analysis,musical information retrieval是基于模型输入需要序列数据:而如translating natural language…
Deep Neural Network - Application Congratulations! Welcome to the fourth programming exercise of the deep learning specialization. You will now use everything you have learned to build a deep neural network that classifies cat vs. non-cat images. In…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
本章涉及到的若干知识点(红字):本章节是作为通往Tensorflow的前奏! 链接:https://www.zhihu.com/question/27823925/answer/38460833 首先,神经网络的最后一层,也就是输出层,是一个 Logistic Regression (或者 Softmax Regression ),也就是一个线性分类器. 那么,输入层和中间那些隐层又在干吗呢?你可以把它们看成一种特征提取的过程,就是把 Logistic Regression 的输出当作特征,然后…
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are the "go to" thing when talking about new fads in machine learning. As such, there's a plethora of courses and tutorials out there on the basic vani…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
A Neural Network in 11 lines of Python A bare bones neural network implementation to describe the inner workings of backpropagation. Posted by iamtrask on July 12, 2015 Summary: I learn best with toy code that I can play with. This tutorial teaches b…
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of p…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 2 – IMPLEMENTING A RNN WITH PYTHON, NUMPY AND THEANO . github地址 在这篇博文中,我们将会使用Python从头开始实现一个循环神经网络,并且利用Theano(一个在GPU上执行操作的库)优化原始的实现.所有的代码…
How Transformers Work --- The Neural Network used by Open AI and DeepMind Original English Version link:https://towardsdatascience.com/transformers-141e32e69591 Chinese version by 量子位. 本文的主要内容:RNN, LSTM, Attention, CNN, Transformer, Self-Attention, M…
0. Overview What is language models? A time series prediction problem. It assigns a probility to a sequence of words,and the total prob of all the sequence equal one. Many Natural Language Processing can be structured as (conditional) language modell…
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame 作者介绍 Reynold Xin, Michael Armbrust and Davies Liu 文章正文 Today, we are excited to announce a new DataFrame API designed to make big data processing even…
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the “go to” thing when talking about new fads in machine learning. As such, there’s a plethora of courses and tutorials out there on the basic vanilla neu…
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exercise of the deep learning specialization. In this notebook you will build your first image recognition algorithm. You will build a cat classifier that r…
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learned developing a practical large scale machine learning system Tuesday, April 06, 2010 Posted by Simon Tong, Google Research When faced with a hard pre…
Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regression (1) Vectorizing the cost function (2) Vectorizing the gradient (3) Vectorizing the regularized cost function (4) Vectorizing the regularized gradi…
Distilling the Knowledge in Neural Network Geoffrey Hinton, Oriol Vinyals, Jeff Dean preprint arXiv:1503.02531, 2015 NIPS 2014 Deep Learning Workshop 简单总结 主要工作(What) "蒸馏"(distillation):把大网络的知识压缩成小网络的一种方法 "专用模型"(specialist models):对于一个大…