在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间的欧氏距离,了解到各个文本之间的相似程度.当然,还有其他很多相似度度量方式,比如说余弦相似度. 在<皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)>一文中简要地介绍了余弦相似度.因此这里,我们比较一下欧氏…
SVD在餐馆菜肴推荐系统中的应用 摘要:餐馆可以分为很多类别,比如中式.美式.日式等等.但是这些类别不一定够用,有的人喜欢混合类别.对用户对菜肴的点评数据进行分析,可以提取出区分菜品的真正因素,利用这些因素我们可以估计人们对没去过的餐厅的看法.提取这些信息的方法就是SVD(Singular Value Decomposition).本文首先介绍SVD的数学原理,然后简单介绍推荐系统的相关原理,最后通过python编程实现简单的基于协同过滤的菜肴推荐系统. 关键词:SVD:推荐系统:python:…
本文主要参考:Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model 在用户对自己需求相对明确的时候,用搜索引擎很方便的通过关键字搜索很快的找到自己需要的信息.但搜索引擎并不能完全满足用户对信息发现的需求,那是因为在很多情况下,用户其实并不明确自己的需要,或者他们的需求很难用简单的关键字来表述.又或者他们需要更加符合他们个人口味和喜好的结果,因此出现了推荐系统,与搜索引擎对应,大家也习惯…