首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Scala中sortBy和Spark中sortBy区别
】的更多相关文章
Scala中sortBy和Spark中sortBy区别
Scala中sortBy是以方法的形式存在的,并且是作用在Array或List集合排序上,并且这个sortBy默认只能升序,除非实现隐式转换或调用reverse方法才能实现降序,Spark中sortBy是算子,作用出发RDD中数据进行排序,默认是升序可以通过该算子的第二参数来实现降序排序的方式…
使用IDEA打包scala程序并在spark中运行
一.首先配置ssh无秘钥登陆, 先使用这条命令:ssh-keygen,然后敲三下回车: 然后使用cd .ssh进入 .ssh这个隐藏文件夹: 再创建一个文件夹authorized_keys,使用命令touch authorized_keys: 然后使用cat id_rsa.pub > authorized_keys 即可: 最后使用 chmod 600 authorized_keys修改权限就完成了. 二.创建spark项目 idea创建spark项目的过程这里就略过了,具体可以看这里https…
Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
【原】Spark中Job如何划分为Stage
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html 1.Spark中Job如何划分为Stage 我们在复习内容中介绍了Spark中Job的提交,下面我们看如何将Job划分为Stage. 对于JobSubmitted事件类型,通过 dagScheduler的handleJobSubmitted方法处理,方法源码如下: private[scheduler] def ha…
Spark中普通集合与RDD算子的sortBy()有什么区别
分别观察一下集合与算子的sortBy()的参数列表 普通集合的sortBy() RDD算子的sortBy() 结论:普通集合的sortBy就没有false参数,也就是说只能默认的升序排. 如果需要对普通集合中的元素需要升序排怎么办? 如图所示,我这调用的sortby()是List集合的方法了,不是算子,所以不能加false参数指定降序排,只能默认的升序排了,但是用reverse()反转就能达到一样的效果. 或者使用takeRight()方法取后十个也一样,注意的是后十个也是按升序排的…
大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
Spark中的键值对操作-scala
1.PairRDD介绍 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD 程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
Scala 深入浅出实战经典 第42讲:scala 泛型类,泛型函数,泛型在spark中的广泛应用
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2 技术爱好者尤其是大数据爱好者 可以加DT大数据梦工厂的qq群 DT大数据梦工厂① :462923555 DT大数据梦工厂②:437123764 DT大数据梦工厂③…
spark中map与mapPartitions区别
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkCon…