torch.backend.cudnn.benchmark】的更多相关文章

大部分情况下,设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题. 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率: 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率.…
[转载]torch参数:torch.backends.cudnn.benchmark的意义 来源:https://zhuanlan.zhihu.com/p/73711222 完整版请看原文,这里只截取一部分结论性的东西: 设置 torch.backends.cudnn.benchmark=True 将会让程序在开始时花费一点额外时间,为整个网络的每个卷积层搜索最适合它的卷积实现算法,进而实现网络的加速.适用场景是网络结构固定(不是动态变化的),网络的输入形状(包括 batch size,图片大小…
设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题. 应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置  torch.backends.cudnn.benchmark = true  可以增加运行效率: 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率.…
总的来说,大部分情况下,设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题. 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置  torch.backends.cudnn.benchmark = true  可以增加运行效率: 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率.…
cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用 如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法 然后再设置: torch.backends.cudnn.benchmark = true 那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置  …
对于Pytorch的结果复现,在不同版本的pytorch或者不同的硬件平台之间,不能够保证结果是完全一致的,即使在CPU和GPU上采用相同的随机数种子. 关于torch.backend.cudnn.benchmark, (CuDNN backend是什么) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False 是相对来说确定性的模式. 包括Conv2d这样的函数,In some circu…
PyTorch常用代码段整理合集 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collections import os import shutil import tqdm import numpy as np import PIL.Image import torch import torchvision 基础配置 检查 PyTorch 版本 torch.__version__ # PyTorch version torch.version.cuda # Corr…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看出差别,先拿torch.nn.Conv2d torch.nn.Conv2d class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=…
cudnn加速运算 torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True 第一句话是说,使用的是非确定性算法,使用cudnn来寻找高效率的计算方式 第二句话是说,自动寻找最优的算法 一般情况下,当数据维度.类型变化不大的情况下这样使用有助于提高运算, 但是如果变化比较大,那么每次计算搜索最优算法的时间就会比较多,反而计算效率慢…
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official style guide for PyTorch. This document summarizes best practices from more than a year of experience with deep learning using the PyTorch framework. Note th…
PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collectionsimport osimport shutilimport tqdm import numpy as np…
1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中 import json import shutil import os from glob import glob from tqdm import tqdm # 此文件的作用是创建每个类的文件夹,以及根据给出来的Json中已经做好的分类,对数据进行对号入座划分. # 加载json文件得出一个字典,然后根据Key值来提取每个文件到相应的文件夹中,(注意去除了不合理数据) try: for i in range(0,59): os.mk…
目录 Pytorch版本yolov3源码阅读 1. 阅读test.py 1.1 参数解读 1.2 data文件解析 1.3 cfg文件解析 1.4 根据cfg文件创建模块 1.5 YOLOLayer 1.6 初始化模型 1.7 加载权重 1.8 计算mAP 2. 阅读train.py 2.1 参数解读 2.2 随机初始化 2.3 设置优化器 2.4 更新优化器 2.5 loss指标 2.6 checkpoint相关 3. 阅读detect.py 3.1 参数解读 3.2 预测框的获取 3.2 核…
[ 今天最开心的事情! ] PyTorch的stable版本更新为1.0之后,原本3D模型无脑out of memory.3D模型torch.backends.cudnn.benchmark必须False的问题总算解决了!!!*★,°*:.☆( ̄▽ ̄)/$:*.°★* . 在训练ResNet50 I3D时发现,benchmark在3D模型训练时仍然要为False! [ PyTorch基础API ] PyTorch中基础API包括: Network architecture: torch.nn.M…
一.CNN情感分类中的面向对象部分 sparse.py super(Embedding, self).__init__() 表示需要父类初始化,即要运行父类的_init_(),如果没有这个,则要自定义初始化 self.weight = Parameter(torch.Tensor(num_embeddings, embedding_dim)) Parameter跳转 class Parameter(Variable): """A kind of Variable that i…
[摘要] PyTorch是最优秀的深度学习框架之一,它简单优雅,非常适合入门.本文将介绍PyTorch的最佳实践和代码风格都是怎样的. 虽然这是一个非官方的 PyTorch 指南,但本文总结了一年多使用 PyTorch 框架的经验,尤其是用它开发深度学习相关工作的最优解决方案.请注意,我们分享的经验大多是从研究和实践角度出发的. 这是一个开发的项目,欢迎其它读者改进该文档:https://github.com/IgorSusmelj/pytorch-styleguide. 本文档主要由三个部分构…
获取和读取数据 初始化模型参数 实现softmax运算 定义模型 定义损失函数 计算分类准确率 训练模型 小结 import torch import torchvision import numpy as np import sys import random import torchvision.transforms as transforms sys.path.append('..') import d2lzh_pytorch as d2l 获取和读取数据 我们将使用Fahsion_MNI…
基础配置 检查 PyTorch 版本 torch.__version__               # PyTorch version torch.version.cuda              # Corresponding CUDA version torch.backends.cudnn.version()  # Corresponding cuDNN version torch.cuda.get_device_name(0)   # GPU type 更新 PyTorch PyTo…
最近在做比赛的时候,遇到了一个最好结果,但是之后无论怎样都复现不出来最好结果了.猜测是不是跟Pytorch中的随机种子有关. 训练过程 在训练过程中,若相同的数据数据集,相同的训练集.测试集划分方式,相同的权重初始化,但是每次训练结果不同,可能有以下几个原因: Dropout的存在 Pytorch.Python.Numpy中的随机种子没有固定 数据预处理.增强方式采用了概率,若没有设置固定的随机种子,结果可能不同.例如常用数据增强库albumentations就采用了Python的随机产生器.…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的. 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码,之前讲解的地址: 非稀疏矩阵版:https://www.cnblogs.com/xiximayou/p/13622283.html 稀疏矩阵版:https://www.cnblogs.com/xiximayou/p/13623989.html 以下改写后的代码我已经上传到gihub上,地址为: ht…
argparse是深度学习项目调参时常用的python标准库,使用argparse后,我们在命令行输入的参数就可以以这种形式python filename.py --lr 1e-4 --batch_size 32来完成对常见超参数的设置.,一般使用时可以归纳为以下三个步骤 使用步骤: 创建ArgumentParser()对象 调用add_argument()方法添加参数 使用parse_args()解析参数 在接下来的内容中,我们将以实际操作来学习argparse的使用方法 import arg…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5668471.html 参考网址: https://devtalk.nvidia.com/default/topic/912765/cudnn-install-error/ https://github.com/soumith/cudnn.torch http://blog.csdn.net/hungryof/article/details/51557666 这个标题也许不太合适,反正需要先安装nvi…
深度学习框架 Torch 7 问题笔记 1. 尝试第一个 CNN 的 torch版本, 代码如下: -- We now have 5 steps left to do in training our first torch neural network -- 1. Load and normalize data -- 2. Define Neural Network -- 3. Define Loss function -- 4. Train network on training data -…
Sample Classification Code of CIFAR-10 in Torch from: http://torch.ch/blog/2015/07/30/cifar.html require 'xlua' require 'optim' require 'nn' require 'image' local c = require 'trepl.colorize' opt = lapp[[ -s,--save (default "logs") subdirectory…
Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. Table of Contents Tutorials Model Zoo Recurrent Networks Convolutional Networks ETC Libraries Model related GPU related IDE related ETC Links Tutorials…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
问题: Disable or able cudnn,查询版本. Disable cudnn for batch_norm: (See: @Microsoft / human-pose-estimation.pytorch#installation) # PYTORCH=/path/to/pytorch # for pytorch v0.4.0 sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/…
Summary on deep learning framework --- Torch7  2018-07-22 21:30:28 1. 尝试第一个 CNN 的 torch版本, 代码如下: -- We now have 5 steps left to do in training our first torch neural network -- 1. Load and normalize data -- 2. Define Neural Network -- 3. Define Loss…