http://cucmakeit.github.io/2014/11/13/%E4%BF%AE%E6%AD%A3%E4%BD%99%E5%BC%A6%E7%9B%B8%E4%BC%BC%E5%BA%A6%E4%B8%8E%E7%9A%AE%E5%B0%94%E6%A3%AE%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0/ 最后一段总结精辟: 需要注意的一点是修正的余弦相似度与皮尔森相关系数之间的细微差别.我之前也一直以为两个公式一样,只是意义上不同,但是仔细观察可以看到…
之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Correlation Coefficient)和余弦相似度(Cosine Similarity)之间有什么关联呢? 首先,我们来看一下什么是余弦相似度.说到余弦相似度,就要用到余弦定理(Law of Cosine). 假设两个向量和之间的夹角为.,向量的长度分别是和,对应的边长为向量减去向量的长度,也就是. 根据余弦…
在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间的欧氏距离,了解到各个文本之间的相似程度.当然,还有其他很多相似度度量方式,比如说余弦相似度. 在<皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)>一文中简要地介绍了余弦相似度.因此这里,我们比较一下欧氏…
概述: 余弦相似度 是对两个向量相似度的描述,表现为两个向量的夹角的余弦值.当方向相同时(调度为0),余弦值为1,标识强相关:当相互垂直时(在线性代数里,两个维度垂直意味着他们相互独立),余弦值为0,标识他们无关. Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them.…
夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异. (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2) 两个n维样本点a(x11,x12,-,x1n)和b(x21,x22,-,x2n)的夹角余弦        类似的,对于两个n维样本点a(x11,x12,-,x1n)和b(x21,x22,-,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度. 即:       …
余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网…
版权声明:本文为博主原创文章,地址:http://blog.csdn.net/napoay,转载请留言. 总结Jackcard类似度和余弦类似度. 一.集合的Jackcard类似度 1.1Jackcard类似度 Jaccard类似指数用来度量两个集合之间的类似性,它被定义为两个集合交集的元素个数除以并集的元素个数. 数学公式描写叙述: J(A,B)=|A∩B||A∪B| 这个看似简单的算法有非常大的用处,比方: 抄袭文档 高明的抄袭者为了掩盖自己抄袭的事实.会选择性的抄袭文档中的一些段落,或者对…
推荐系统之余弦相似度的Spark实现 (1)原理分析    余弦相似度度量是相似度度量中最常用的度量关系,从程序分析中, 第一步是数据的输入, 其次是使用相似性度量公式 最后是对不同用户的递归计算.    本例子是基于欧几里得举例的相似度计算. (2)源代码 package com.bigdata.demo import org.apache.spark.{SparkContext, SparkConf} /** * Created by SimonsZhao on 3/29/2017. */…
在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识.        这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算. 一. 基础知识 第一部分参考我的文章: 基于VSM的命名实体识别.歧义消解和指代消解 第一步,向量空间模型VSM …
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品:  考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户:  考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度…