函数说明: 1 CountVectorizer(ngram_range=(2, 2)) 进行字符串的前后组合,构造出新的词袋标签 参数说明:ngram_range=(2, 2) 表示选用2个词进行前后的组合,构成新的标签值 Ngram模型表示的是,对于词频而言,只考虑一个词,这里我们在CountVectorizer统计词频时,传入ngram_range=(2, 2)来构造新的词向量的组合 好比一句话'I like you' 如果ngram_range = (2, 2)表示只选取前后的两个词构造词…
函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0-9\s]' 配对的模式,^表示起始位置,\s表示终止位置,[]表示取中间部分,这个的意思是找出除字符串大小写或者数字组成以外的东西,repl表示使用什么进行替换,这里使用'',即直接替换,string表示输入的字符串 2. stopwords = nltk.corpus.stopwords.word…
TF-idf模型:TF表示的是词频:即这个词在一篇文档中出现的频率 idf表示的是逆文档频率, 即log(文档的个数/1+出现该词的文档个数)  可以看出出现该词的文档个数越小,表示这个词越稀有,在这篇文档中也是越重要的 TF-idf: 表示TF*idf, 即词频*逆文档频率 词袋模型不仅考虑了一个词的词频,同时考虑了这个词在整个语料库中的重要性 代码: 第一步:使用DataFrame格式处理数据,同时数组化数据 第二步:定义函数,进行分词和停用词的去除,并使用‘ ’连接去除停用词后的列表 第三…
函数说明 1.LDA(n_topics, max_iters, random_state)  用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_iters表示最大的迭代次数, random_state 表示随机种子 2. LDA.components_ 打印输入特征的权重参数, LDA主题模型:可以用于做分类,好比如果是两个主题的话,那就相当于是分成了两类,同时我们也可以找出根据主题词的权重值,来找出一些主题的关键词 使用sklearn导入库…
1.dictionary = gensim.corpora.Dictionary(clean_content)  对输入的列表做一个数字映射字典, 2. corpus = [dictionary,doc2vec(cl_content) for cl_content in clean_content]  # 输出clean_content每一个元素根据dictionary做数字映射后的结果 3.lda = gensim.model.ldamodel.LdaModel(corpus=corpus,…
函数说明: 1. from gensim.model import word2vec  构建模型 word2vec(corpus_token, size=feature_size, min_count=min_count, window=window, sample=sample) 参数说明:corpus_token已经进行切分的列表数据,数据格式是list of list , size表示的是特征向量的维度,即映射的维度, min_count表示最小的计数词,如果小于这个数的词,将不进行统计,…
0. 前情回顾 上一周的文章中,我们通过kNN算法了解了机器学习的一些基本概念.我们自己实现了简单的kNN算法,体会了其过程.这一周,让我们继续机器学习的探索. 1. 数据集的拆分 上次的kNN算法介绍中,我们只是简单地实现了这样一个算法,并用一组测试数据进行了测试. 然而,在真正的工程应用中,我们设计出的机器学习算法,并不一定非常准确,甚至可能非常不准确.因此我们需要进行测试,如同我们设计好了一个数据结构后,需要使用尽可能涵盖各种情况的参数调用各个操作,并通过一定的方式观察是否符合我们对这种数…
 接口测试有时参数使用随机数构造.jmeter添加随机数两种方式 1  添加配置 > Random Variable  2  __Random函数   ${__Random(1000,9999)} 方式一 Random Variable  方式二  __Random()函数 添加http请求,2个参数:订单号,用户分别是两种方式生成的. 订单号 = 日期+__Random函数生成随机数 用户名= 随机变量输出的固定格式随机数 random_function orderid_${__time(yy…
TensorFlow 中可以通过三种方式读取数据: 一.通过feed_dict传递数据: input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1, input2) with tf.Session() as sess: feed_dict={input1: [[7.,2.]], input2: [[2.],[3.]]} print(sess.run(out…
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 文本数据需要特殊处理,然后才能开始将其用于预测建模. 我们需要解析文本,以删除被称为标记化的单词.然后,这些词还需要被编码为整型或浮点型,以用作机器学习算法的输入,这一过程称为特征提取(或矢量化). scikit-learn 库提供易于使用的工具来对文本数据进行标记和特征提取. 在本教程中,您可以学到如何使用 scikit-learn 为 Python 中的预测建模准备文本数据. 完成本教程后,您可以学到: 如何使用 CountVector…