矩阵分解-----LDL分解】的更多相关文章

若一个矩阵A是正定的,那么该矩阵也可以唯一分解为\[{\bf{A = LD}}{{\bf{L}}^{\bf{T}}}\] 其中L是对角元素都为1的下三角矩阵,D是对角元素都为正数的对角矩阵.还是以三维矩阵进行简单说明 \[{\bf{A = LD}}{{\bf{L}}^{\bf{T}}} = \left[ {\begin{array}{*{20}{c}}1&0&0\\{{L_{21}}}&1&0\\{{L_{31}}}&{{L_{32}}}&1\end{arr…
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [l,u]=lu12(a,n) for k=1:n-1 for i=k+1:n a(i,k)=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-a(i,k)*a(k,j); end end end l=eye(n); u=zeros(n,n); for k=1:n fo…
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD…
矩阵分解是将矩阵拆解成多个矩阵的乘积,常见的分解方法有 三角分解法.QR分解法.奇异值分解法.三角分解法是将原方阵分解成一个上三角矩阵和一个下三角矩阵,这种分解方法叫做LU分解法.进一步,如果待分解的矩阵A是正定的,则A可以唯一的分解为 \[{\bf{A = L}}{{\bf{L}}^{\bf{T}}}\] 其中L是下三角矩阵.下面以三维矩阵进行简单说明: \[\begin{array}{ccccc}{\bf{A = L}}{{\bf{L}}^{\bf{T}}}{\rm{ = }} & \lef…
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <cassert> #include <ctime> class MclVector { public: int n; double *Mat; /** type=0: 列向量 type=1: 行向量 **/ int type; MclVector() { Mat=NU…
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析中,用来解线性方程.求反矩阵或计算行列式. 什么是LU分解 如果有一个矩阵A,将A表示成下三角矩阵L和上三角矩阵U的乘积,称为A的LU分解. 更进一步,我们希望下三角矩阵的对角元素都为1: 一旦完成了LU分解,解线性方程组就会容易得多. LU分解的步骤 上一章讲到,对于满秩矩阵A来说,通过左乘一个消…
1.Gram-Schmidt正交化 假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵: 假设正交化后的矩阵为Q=[A,B],我们可以令A=a,那么我们的目的根据AB=I来求B,B可以表示为b向量与b向量在a上的投影的误差向量: $$B=b-Pb=b-\frac{A^Tb}{A^TA}A$$   2.Givens矩阵与Givens变换 为Givens矩阵(初等旋转矩阵),也记作. 由Givens矩阵所确定的线性变换称为Giv…
输入整数(0-30)分解成所有整数之和.每四行换行一次. 一种方法是通过深度优先枚举出解.通过递归的方式来实现. #include <stdio.h> #include <string.h> #define MAXN 30 #define MAXString 64 int Terms[MAXN]; int N; int Count; void Search(int Remainder,int Start,int nTerm) { int i; ){ Count++; !=) pri…
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <cassert> #include <vector> #include <ctime> class MclVector { public: int n; double *Mat; /** type=0: 列向量(默认) type=1: 行向量 **/ in…
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…
介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其中协同过滤技术又可根据是否采用了机器学习思想建模的不同划分为基于内存的协同过滤(Memory-based CF)与基于模型的协同过滤技术(Model-based CF).其中基于模型的协同过滤技术中尤为矩阵分解(Matrix Factorization)技术最为普遍和流行,因为它的可扩展性极好并且易…
1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的评分矩阵分解为3个矩阵,而推荐本文要介绍的MF是直接将一个矩阵分解为两个矩阵,一个包含Users 的因子向量,另一个包含着Items 的因子向量. 2.原理简介 假如电影分为三类:动画片,武打片,纪录片,而某一部电影对应这三类的隶属度分别为 0, 0.2, 0.7,可以看出这是一部纪录片里面有些武打成…
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的.正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0.相对应的,半正定矩阵的行列式必然 ≥ 0.   QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式. 任意实数方阵A,都能被分解为A=QR.这里的Q为正交单位阵…
Eigen提供了解线性方程的计算方法,包括LU分解法,QR分解法,SVD(奇异值分解).特征值分解等.对于一般形式如下的线性系统: 解决上述方程的方式一般是将矩阵A进行分解,当然最基本的方法是高斯消元法. 先来看Eigen 官方的第一个例程: #include <iostream> #include <Eigen/Dense> using namespace std; using namespace Eigen; int main() { Matrix3f A; Vector3f…
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等.        这种算法是在NetFlix(没错,就是用大数据捧火<纸牌屋>的那家公司)的推荐算法竞赛中获奖的算法,最早被应用于电影推荐中,在实际应用中比现在排名第一的 @邰原朗所介绍的算法误差(RMSE)会小不少,效率更高.下面仅利用基础的矩阵知识来介绍下这种算法.        该算法的思想是…
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去法,把左边的系数矩阵分解为一个单位下三角矩阵和一个上三角矩阵相乘的形式.这样,求解这个线性方程组就转化为求解两个三角矩阵的方程组.具体的算法细节这里不做过多的描述,有很多的教材和资源可以参考.这里推荐的参考读物如下: Numerical recipes C++,还有包括MIT的线性代数公开课. 2.…
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM 原理进行详细阐述,给出其基本算法原理.此外,还将介绍使得隐语义模型声名大噪的算法FunkSVD和在其基础上改进较为成功的BiasSVD.最后,对LFM进行一个较为全面的总结. 1. 矩阵分解应用于推荐算法要解决的问题 在推荐系统中,我们经常可能面临的场景是:现有大量用户和物品,以及少部分用户对少部分…
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \begin{bmatrix} 1 & 2 & 4 \\ 3 & 7 & 2 \\ 2 & 3 & 3 \\ \end{bmatrix}\),我们最终要分解成如下形式: \[A=L\cdot U = \begin{bmatrix} 1 & 0 & 0 \…
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b 消元后变为 ,即 , 由于  为上三角矩阵, 使用回带法即可求解方程组. 对矩阵  做如下运算 .在消元过程中,已知 ,如何求解  呢? 表示将矩阵A的第二行乘以 1 再加上矩阵A的第三行得到矩阵B的第三行,矩阵B的第一二行于矩阵A的第一二行保持一致.根据语义, 表示将矩阵B的第二行乘以 -1 再…
    接着LU分解继续往下,就会发展出很多相关但是并不完全一样的矩阵分解,最后对于对称正定矩阵,我们则可以给出非常有用的cholesky分解.这些分解的来源就在于矩阵本身存在的特殊的 结构.对于矩阵A,如果没有任何的特殊结构,那么可以给出A=L*U分解,其中L是下三角矩阵且对角线全部为1,U是上三角矩阵但是对角线的值任意,将U正规化成对角线为1的矩阵,产生分解A = L*D*U, D为对角矩阵.如果A为对称矩阵,那么会产生A=L*D*L分解.如果A为正定对称矩阵,那么就会产生A=G*G,可以这…
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解:A=CD  ,  A是m×n矩阵,C是m×4矩阵,D是4×n矩阵. 奇异值分解:A=UDVT 谱分解: 在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵.下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y…
    前面已经说过LU,Cholesky和QR分解,这次介绍的是实Schur分解.对这个分解的定义是任意一个矩阵A,可有如下形式的分解:               U*A*U' = B;其中B是拟上三角矩阵,拟上三角矩阵的定义是在矩阵的对角线上存在2x2大小的矩阵,而且矩阵U是正交矩阵,因为矩阵A的特征值和B的特征值相同.而且A的特征值出现在B的对角线上.计算特征值分解和SVD都依靠这个算法做最基本的处理,然后根据不同的任务有不同的处理. 计算schur分解的方法是是QR算法,这个算法的原理…
1/6 LU 分解          LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU - LU decomposition for matrix A % work as gauss elimination   [m, n] = size(A); if m ~= n      error('Error, current time only support square matrix')…
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是由于SVD能够说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章.本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似.本节讨论的矩阵都是实数矩阵. 基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外全部元素都为零的方阵 3.…
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章.本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似.本节讨论的矩阵都是实数矩阵. 基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵 3.…
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是也可以找到这样的向量,使得经\(A\)变换后,不改变方向而只伸缩?答案是可以的,这种向量就是\(A\)的特征向量,而对应的伸缩比例就是对应的特征值. 特征值会有复数是为什么? 首先要知道,虚数单位\(i\)对应的是旋转\(90^o\),那么,如果特征值是复数,则对应的特征向量经矩阵\(A\)变换后将…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出python,这里先给出一个简单的矩阵.表示用户和物品之间的关系 这里我自己有个疑惑? 对这样一个DATA = U(Z)Vt 这里的U和V真正的几何含义  :  书上的含义是U将物品映射到了新的特征空间, V的转置  将 用户映射到了新的特征空间 以下是代码实现.同一时候SVD还能够用于降维,降维的操…
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着重要的作用. 平面旋转 设 \(1 \leqslant i < j \leqslant n\),称 为平面旋转或者 Givens 旋转. 容易验证对任何一对指数 \(i,j,(1 \leqslant i < j \leqslant n)\) 以及任何参数 \(\theta \in [0,2\pi)…