hadoop中国字、词频统计和排序】的更多相关文章

例如需求,下面: 有被看作图输入文件中. 代表ip地址,之后的偶数列代表搜索词.数字(奇数列)代表搜索次数.使用"\t"分隔.如今须要对搜索词进行分词并统计词频,此处不考虑搜索次数,可能是翻页,亦不考虑搜索链接的行为. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGFvemhhb2t1bg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEas…
Trie树:应用于统计和排序 1. 什么是trie树 1.Trie树 (特例结构树)       Trie树,又称单词查找树.字典树,是一种树形结构,是一种哈希树的变种,是一种用于快速检索的多叉树结构.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高.      Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的.      Trie树也有它的…
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGroupingComparator 在0.20.0以后使用是 job.setPartitionerClass(Partitioner p); job.setSortComparatorClass(RawComparator c); job.setGroupingComparatorClass(RawCom…
Hadoop基础-MapReduce的排序 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce的排序分类 1>.部分排序 部分排序是对单个分区进行排序,举个简单的例子,第一个分区中的数据为1,3,5:而第二个分区为2,4,这两个分区的值看起来是没有连续性的,但是每个分区中的数据又是排序的!下面是我画的一个草图: 2>.全排序 全排序是对所有分区中的数据均排序,比如第一个分区的值为1,2,3,而第二个分区为4,5 很显然2个分区是经过排序的,可以明显的看清楚…
声明:    1)本文由我原创撰写,转载时请注明出处,侵权必究. 2)本小实验工作环境为Ubuntu操作系统,hadoop1-2-1,jdk1.8.0. 3)统计词频工作在单节点的伪分布上,至于真正实际集群的配置操作还没有达到,希望能够由本文抛砖引玉. (一)Hadoop的配置修正 网上有很多Hadoop的配置教程,可自行寻找,这一部分主要是根据自身实际情况,结合自身特点,设置Hadoop.因为有时候根据别人的教程,设置总是不成功,因为别人的教程依赖于别人的软件或操作环境特点. 本部分也不可能提…
前言:首先有这样一个需求,需要统计一篇10000字的文章,需要统计里面哪些词出现的频率比较高,这里面比较重要的是如何对文章中的一段话进行分词,例如“北京是×××的首都”,“北京”,“×××”,“中华”,“华人”,“人民”,“共和国”,“首都”这些是一个词,需要切分出来,而“京是”“民共”这些就不是有意义的词,所以不能分出来.这些分词的规则如果自己去写,是一件很麻烦的事,利用开源的IK分词,就可以很容易的做到.并且可以根据分词的模式来决定分词的颗粒度. ik_max_word: 会将文本做最细粒度…
一.词频统计 下载喜欢的电子书或大量文本数据,并保存在本地文本文件中 编写map与reduce函数 本地测试map与reduce 将文本数据上传至HDFS上 用hadoop streaming提交任务 查看运行结果 计算结果取回到本地 二.气象数据分析 如:求每日最高温度 批量下载气象数据 解压数据集,并保存在本地文本文件中 编写map与reduce函数 本地测试map与reduce 将气象数据上传至HDFS上 用hadoop streaming提交任务 查看运行结果 计算结果取回到本地…
本篇博客是金子在学习hadoop过程中的笔记的整理,不论看别人写的怎么好,还是自己边学边做笔记最好了. 1:shuffle阶段的排序(部分排序) shuffle阶段的排序可以理解成两部分,一个是对spill进行分区时,由于一个 分区包含多个key值,所以要对分区内的<key,value>按照key进行排序,即key值相同的一 串<key,value>存放在一起,这样一个partition内按照key值整体有序了. 第二部分并不是排序,而是进行merge,merge有两次,一次是ma…
order by order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规模较大时,需要较长的计算时间. set hive.mapred.mode=nonstrict; (default value / 默认值) set hive.mapred.mode=strict; order by 和数据库中的Order by 功能一致,按照某一项 & 几项 排序输出. 与数据库中 order by 的区别在于在hive.…
现有数据如下: 3 3 3 2 3 1 2 2 2 1 1 1 要求为: 先按第一列从小到大排序,如果第一列相同,按第二列从小到大排序 如果是hadoop默认的排序方式,只能比较key,也就是第一列,而value是无法参与排序的 这时候就需要用到自定义的排序规则 解决思路: 自定义数据类型,将原本的key和value都包装进去 将这个数据类型当做key,这样就比较key的时候就可以包含第一列和第二列的值了 自定义数据类型NewK2如下: //要实现自定义的排序规则必须实现WritableComp…
①自定义按某列排序,二次排序 writablecomparable中的compareto方法 ②topk a利用treemap,缺点:map中的key不允许重复:https://blog.csdn.net/u010660276/article/details/50967054 b封装mapper<key,value>中的key实现writablecompareable接口,实现排序https://blog.csdn.net/lzm1340458776/article/details/43228…
import org.apache.spark.{SparkConf, SparkContext}/** * Created by loushsh on 2017/10/9. */object WordCount { def main(args:Array[String]): Unit ={ val conf=new SparkConf() val sc=new SparkContext(conf) val line= sc.textFile(args(0)) val count=line.fl…
先给出github上的代码链接以及项目需求 1.项目概述 这个项目的需求可以概括为:对记事本(txt)文件进行单词的词频统计和排序,排序结果以指定格式输出到默认文件中,并要求能够快速地完成整个统计和结果输出功能.乍一看,这个功能实现起来十分简单,基本上就是遍历一遍文件,对提取出来的单词按照词频排个序就搞定了.但是要是考虑到性能问题,那还需要多动动脑筋.下面附上这项目的PSP表格. PSP2.1 PSP阶段 预估耗时(分钟) 实际耗时(分钟) PSP2.1 PSP阶段 预估耗时(分钟) 实际耗时(…
Github 地址:chaosrings/wcPro 1.PSP2.1表格 psp 2.1 psp阶段 预估耗时(分钟) 实际耗时(分钟) Planning 计划 10 10 Estimate 估计这个任务需要多少时间 10 10 Development 开发 200 250 Analysis 需求分析(包括学习新技术) 60 150 Design Spec 生成设计文档 20 20 Design Review 设计复审(和同事审核设计文档) 10 10 Coding Standard 代码规范…
Github:https://github.com/Hoyifei/SQ-T-Homework-WordCount-Advanced (注:Github上的所有代码由我代为提交) PSP:(注:部分实际用时不准确) PSP2.1 PSP阶段 预估耗时 (分钟) 实际耗时 (分钟) Planning 计划     · Estimate · 估计这个任务需要多少时间  10  10 Development 开发     · Analysis · 需求分析 (包括学习新技术)  45  30 · De…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/jiq408694711/article/details/34181439 前面已经在我的Ubuntu单机上面搭建好了伪分布模式的HBase环境,当中包含了Hadoop的执行环境. 详见我的这篇博文:http://blog.csdn.net/jiyiqinlovexx/article/details/29208703 我的目的主要是学习HBase,下一步打算学习的是将HBase作为Hadoop作业的…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
在Hadoop中实现全排序有如下三种方法: 1. 只使用一个reducer 2. 自定义partitioner 3. 使用TotalOrderPartitioner 其中第一种方法显然违背了mapreduce分布式编程的初衷,在数据量大的情况下并不适用.第二种方法的问题在于开发人员需要预先知道输入数据集的取值分布,不然无法保证每一个reducer的负载均衡.这里我们简单介绍下第三种方法. package SortTest; import java.io.IOException; import o…
按数值排序 示例:按气温字段对天气数据集排序问题:不能将气温视为Text对象并以字典顺序排序正统做法:用顺序文件存储数据,其IntWritable键代表气温,其Text值就是数据行常用简单做法:首先,增加偏移量以消除所有负数:其次,在数字面前加0,使所有数字的长度相等:最后,用字典法排序.streaming的做法:-D mapred.text.key.comparator.options="-k1n -k2nr" 第一个year字段按数值顺序排序,第二个temp字段按数值顺序方向排序…
数据源 A B C D Z 要实现的输出 Z D B C A 看字符顺序,其实什么也没有,只是按照后面的数字进行一次倒序排序,实现思路,1利用hadoop自带的排序功能,2.KV互换 实现代码 public class SVJob { public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new C…
1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Partition的概念以及使用.(1)Partition的原理和作用        得到map给的记录后,…
Hadoop排序,从大的范围来说有两种排序,一种是按照key排序,一种是按照value排序.如果按照value排序,只需在map函数中将key和value对调,然后在reduce函数中在对调回去.从小范围来说排序又分成部分排序,全局排序,辅助排序(二次排序)等.本文介绍如何在Hadoop中实现全局排序.   全局排序,就是说在一个MapReduce程序产生的输出文件中,所有的结果都是按照某个策略进行排序的,例如降序还是升序.MapReduce只能保证一个分区内的数据是key有序的,一个分区对应一…
声明: 1)本文由我bitpeach原创撰写,转载时请注明出处,侵权必究. 2)本小实验工作环境为Windows系统下的百度云(联网),和Ubuntu系统的hadoop1-2-1(自己提前配好).如不清楚配置可看<Hadoop之词频统计小实验初步配置> 3)本文由于过长,无法一次性上传.其相邻相关的博文,可参见<Hadoop的改进实验(中文分词词频统计及英文词频统计) 博文目录结构>,以阅览其余三篇剩余内容文档. (五)单机伪分布的英文词频统计Python&Streamin…
转载:http://blog.tianya.cn/m/post.jsp?postId=53271442 1.MapReduce中数据流动 (1)最简单的过程:  map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce 2.Mapreduce中Partiti…
Hadoop之WritableComprale 排序 Hadoop只对key进行排序 排序是 MapReduce 框架中最重要的操作之一.Map Task 和 Reduce Task 均会对数据(按照 key)进行排序. 该操作属于 Hadoop 的默认行为.任何应用程序中的数据均会被排序,而不管逻辑上是否需要. 默认排序是按照字典顺序排序,且实现该排序的方法是快速排序.对于 Map Task,它会将处理的结果暂时放到一个缓冲区 中,当缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次排序,…
原文链接:http://www.cnblogs.com/xia520pi/archive/2012/06/04/2534533.html 1.数据去重  "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce程序设计. 1.1 实例描述 对数据文件中的数据进行去重.数据文件中的每行都是一个数据. 样例输入如下所示: 1)file1: 2012-3…
一直在搞spark,也没时间弄hadoop,不过Hadoop基本的编程我觉得我还是要会吧,看到一篇不错的文章,不过应该应用于hadoop2.0以前,因为代码中有  conf.set("mapred.job.tracker", "192.168.1.2:9001");新框架中已改为 Yarn-site.xml 中的 resouceManager 及 nodeManager 具体配置项,新框架中历史 job 的查询已从 Job tracker 剥离,归入单独的mapre…
1.数据去重  "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce程序设计. 1.1 实例描述 对数据文件中的数据进行去重.数据文件中的每行都是一个数据. 样例输入如下所示: 1)file1: 2012-3-1 a 2012-3-2 b 2012-3-3 c 2012-3-4 d 2012-3-5 a 2012-3-6 b 2012-3-7…
一篇讲得很好的hadoop实例,非常适合初学者学习hadoop. 本文转载自:http://www.cnblogs.com/xia520pi/archive/2012/06/04/2534533.html,感谢作者虾皮的分享. 1.数据去重  "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce程序设计. 1.1 实例描述 对数据文件中的数据进…
pig是hadoop的一个子项目,用于简化MapReduce的开发工作,可以用更人性化的脚本方式分析数据. 一.安装 a) 下载 从官网http://pig.apache.org下载最新版本(目前是0.14.0版本),最新版本可以兼容hadop 0.x /1.x / 2.x版本,直接解压到某个目录即可. 注:下面是几个国内的镜像站点 http://mirrors.cnnic.cn/apache/pig/ http://mirror.bit.edu.cn/apache/pig/ http://mi…