定义和简单性质 欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的. 欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数. 对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1). 欧拉函数的一些性质: 1.对于素数p, φ(p)=p-1,对于对两个素数p,q φ(pq)=pq-1 欧拉函数是积性函数,但不是完全积性函数. 2.对于一个正整数N的素数幂分解N=P1^q1*P2^q2*...*Pn^qn. φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/…