最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function = (y_hat -y )^2的一个特例,类似的像各位说的还可以用各种距离度量来作为loss function而不仅仅是欧氏距离.所以loss function可以说是一种更一般化的说法. 最大似然估计是从概率角度来想这个问题,直观理解,似然函数在给定参数的条件下就是观测到一组数据realizat…
[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点. 0x01 背景知识 1. 概率 vs 统计 概率(probability)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 1.1 概率 概率研究的是,已经知道了模型和参数后,给出一个事件发生的概率. 概率是一种…
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大.极大似然原理的直观想法我们用下面例子说明.设甲箱中有99个白球,1个黑球:乙箱中有1个白球.99个黑球.现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的.一般说来,事件A发生的概…
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 极大似然估计 一.最大似然原理 二.极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法.极大似然估计提供了一种给定观察数据来评估模型参数的方法,即"模型已定,参数未知".通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计. 简…
首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可以这么考虑 比如有n个x,xi对应yi=1的概率是pi,yi=0的概率是1-pi,当参数θ取什么值最合适呢,可以考虑 n个x中对应k个1,和(n-k)个0(这里k个取1的样本是确定的,这里就假设前k个是1,后边的是0.平时训练模型拿到的样本也是确定的,如果不确定还要排列组合) 则(p1*p2*...…
Chapter 4 1. 最小二乘和正规方程 1.1 最小二乘的两种视角 从数值计算视角看最小二乘法 我们在学习数值线性代数时,学习了当方程的解存在时,如何找到\(\textbf{A}\bm{x}=\bm{b}\)的解.但是当解不存在的时候该怎么办呢?当方程不一致(无解)时,有可能方程的个数超过未知变量的个数,我们需要找到第二可能好的解,即最小二乘近似.这就是最小二乘法的数值计算视角. 从统计视角看最小二乘法 我们在数值计算中学习过如何找出多项式精确拟合数据点(即插值),但是如果有大量的数据点,…
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表示向量元素的平方和再开平方 在p范数下定义的单位球(unit ball)都是凸集(convex set,简单地说,若集合A中任意两点的连线段上的点也在集合A中,则A是凸集),但是当0<p<1时,在该定义下的unit ball并不是凸集(注意:我们没说在该范数定义下,因为如前所述,0<p<…
Linear least squares, Lasso,ridge regression有何本质区别? Linear least squares, Lasso,ridge regression有何本质区别? 还有ridge regression uses L2 regularization; and Lasso uses L1 regularization. L1和L2一般如何选取? 我觉得这个问题首先要从"为什么普通的线性回归在很多场合不适用"开始说起,要理解这个问题一定要把大一线性…
一.过拟合 建模的目的是让模型学习到数据的一般性规律,但有时候可能会学过头,学到一些噪声数据的特性,虽然模型可以在训练集上取得好的表现,但在测试集上结果往往会变差,这时称模型陷入了过拟合,接下来造一些伪数据进行演示: import os os.chdir('../') from ml_models.linear_model import * import numpy as np import matplotlib.pyplot as plt %matplotlib inline #造伪样本 X=…
https://www.cnblogs.com/sylvanas2012/p/5058065.html 写的贼好 http://www.cnblogs.com/washa/p/3222109.html#3543182…