「AHOI2014/JSOI2014」骑士游戏】的更多相关文章

「AHOI2014/JSOI2014」骑士游戏 传送门 考虑 \(\text{DP}\). 设 \(dp_i\) 表示灭种(雾)一只编号为 \(i\) 的怪物的代价. 那么转移显然是: \[dp_i = \min(K_i, S_i + \sum_{j = 1}^{R_i} dp_{v_j})\] 但是我们会发现这个东西是有后效性的... 所以我们会想要用建图然后跑一个最短路什么的来搞... 于是我们观察到上面那个 \(\text{DP}\) 式子中,\(dp_i\) 如果用后面那一项来转移,显然…
「AHOI2014/JSOI2014」宅男计划 传送门 我们首先要发现一个性质:存货天数随买食物的次数的变化类似于单峰函数. 具体证明不会啊,好像是二分加三分来证明?但是没有找到明确的严格证明. 感性理解一下就是:买的食物太少,很容易饿死:买太多就没钱了,也活不长. 所以我们考虑如何对于当前三分的答案如何 \(\text{check}\) . 有一个显而易见的性质就是我们不会用价格更高,质量更劣的食品. 也就是说我们希望价格高的食品质量也一定要更好. 所以我们可以把所有食物按照价格或者质量排序,…
「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \(tp, bt\),那么我们发现最终矩形一定是由所有满足从第 \(tp\) 行到第 \(bt\) 行都是白格子的矩形顺次连接,并且两端再各自接上一个最大的前缀和一个最大的后缀构成的. 这个我们可以 \(O(m)\) 地算. 总复杂度就是 \(O(n^2m)\),也就是一个根号级别的. 对于 \(n \ge…
「AHOI2014/JSOI2014」奇怪的计算器 传送门 我拿到这题首先是懵b的,因为感觉没有任何性质... 后来经过同机房dalao的指导发现可以把所有的 \(X\) 放到一起排序,然后我们可以发现每次操作都不会改变这个排完序之后的序列的单调性(始终单调不降),也就是说如果其中有一次操作使得数列中的某些数越界了,那么肯定是一个前缀或一个后缀,分别对应向下和向上越界. 然后我们就可以用线段树来搞,每次操作直接用线段树区间修改实现(具体细节待会讲),判断越界的话,我们就存一下区间的最小值和最大值…
「AHOI2014/JSOI2014」支线剧情 传送门 上下界网络流. 以 \(1\) 号节点为源点 \(s\) ,新建一个汇点 \(t\),如果 \(u\) 能到 \(v\),那么连边 \(u \to v\),下界为 \(1\),上界为 \(+\infty\),费用为对应的所需时间,表示这段剧情至少看一次,且看一次代价为对应的所需时间. 又因为我们可以在任何一个节点重开一次,所以我们的每个节点 \(u\) 都连边 \(u \to t\) ,下界为 \(0\),上界为 \(+\infty\),费…
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生的你对这个活动非常感兴趣.你每天都要从西向东经过教学楼一条很长的走廊,这条走廊是如此的长,以至于它被人戏称为 infinite corridor.一次,你经过这条走廊的时,注意到在走廊的墙壁上隐藏着 \(n\) 个等长的二进制的数字,长度均为 \(m\).你从西向东将这些…
首先是题目链接  http://codevs.cn/problem/1922/ 结果发现题目没图(心情复杂 然后去网上扒了一张图 大概就是这样了. 如果把每个点和它可以攻击的点连一条边,那问题就变成了求二分图的最大独立集了 (二分图最大独立集:即一个点集,集合中任两个结点不相邻),然后就是建图了. 题图非常好心的帮忙染色了,所以我们可以看出来,一个点可以到达的点和它的颜色是不一样的,所以只需要黑白染色就可以了,然后把黑点看作一个集合, 白点看作一个集合,又因为二分图最大独立集= 二分图最大匹配,…
题目大意: 给一个$G=(V,E)$,满足$|V|=n$,$|E|=m$,且保证图联通,有Q个询问,每组询问有s个点,求图中有多少点满足:将其删去后,这s个点中存在一对点集$(a,b)$不联通且删去点不为s中的点. $n,m,\sum s$均为$1e5$级别. 题解: 显然满足性质的点都是割点. 我们建一颗圆方树,然后考虑对于每组询问为所有点之间路径覆盖的割点数量. 用虚树+树剖维护即可. 不是很难,但考场上把点双写错,多调了1h. 代码: #include "bits/stdc++.h&quo…
题面 题解 第\(i\)个数之前的符号是或那么记为0,是与就记为1,得到一个二进数x 然后按位分开考虑,如果这一行是1那么记为1,如果这一位数位0记为0,得到一个二进制数\(b_i\) 第\(N\)行是最高位,如果这一位是1的话,需要有\(x < b_i\) 然后我们把所有\(b_i\)从大到小排个序,对于一个\(r\)要满足按照\(b\)的顺序所有的0不在1的前面,然后找到第一个0出现的\(b_i\),最后一个1出现的\(b_j\),答案是\(b_j - b_i\) 代码 #include <…
差不多理解板子之后,写了一些奇怪的题. 但是还是那个问题:树剖真好使. 魔法森林:mikufun说这个是傻逼题. 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐士. 魔法森林可以被看成一个包含n个节点m条边的无向图,节点标号为1-n,边标号为1-m. 初始时小 E 同学在号节点 ,隐士则住在n号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击. 幸运的是,在1号节点住着两种守护精灵:…