转载自wentingtu 基于LDA的Topic Model变形最近几年来,随着LDA的产生和发展,涌现出了一批搞Topic Model的牛人.我主要关注了下面这位大牛和他的学生:David M. BleiLDA的创始者,04年博士毕业.一篇关于Topic Model的博士论文充分体现其精深的数学概率功底:而其自己实现的LDA又可体现其不俗的编程能力.说人无用,有论文为证: J. Chang and D. Blei. Relational Topic Models for Document Ne
已迁移到我新博客,阅读体验更佳parsing:NLP之chart parser句法分析器 完整代码实现放在我的github上:click me 一.任务要求 实现一个基于简单英语语法的chart句法分析器. 二.技术路线 采用自底向上的句法分析方法,简单的自底向上句法分析效率不高,常常会重复尝试相同的匹配操作(回溯之前已匹配过).一种基于图的句法分析技术(Chart Parsing)被提出,它把已经匹配过的结果保存起来,今后需要时可直接使用它们,不必重新匹配.(动态规划) cha
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | 微软研究院AI头条 编者按:在过去的一段时间,自然语言处理领域取得了许多重要的进展,Transformer.BERT.无监督机器翻译,这些词汇仿佛在一夜之间就进入了人们的视野.你知道它们具体都是什么意思吗?今天,我们就将为大家介绍三个NLP领域的热门词汇. 01Transformer Transformer在2017年由Google在题为<Attention Is All You Need