首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pandas 计算值 四分位
2024-10-29
四分位数与pandas中的quantile函数
四分位数与pandas中的quantile函数 1.分位数概念 统计学上的有分位数这个概念,一般用p来表示.原则上p是可以取0到1之间的任意值的.但是有一个四分位数是p分位数中较为有名的. 所谓四分位数:即把数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数. 为了更一般化,在计算的过程中,我们考虑p分位.当p=0.25 0.5 0.75 时,就是在计算四分位数. 第1四分位数 (Q1),又称"较小四分位数",等于该样本中所有数值由小到大排列后第25%的数字. 第2四分
pandas应用之分组因子暴露和分位数分析
pandas应用之分组因子暴露和分位数分析 首先感谢原书作者Mes McKinney和batteryhp网友的博文, 俺在此基础上继续探索python的神奇功能. 用A股的实际数据, 以书里的代码为蓝本, 做一些实证探索. 发现不少问题 pandas版本升级之后, 函数调用的方式必须相应地改变. 比如 pd.rolling_mean 升级为Series.rolling().mean()等等 tushare的数据与yahoo财经的数据格式上的差异, 需要规整化, 等等 至少会有两篇后续的博文详细记
数据处理之pandas简单介绍
Offical Website :http://pandas.pydata.org/ 一:两种基本的数据类型结构 Series 和 DataFrame 先来看一下Series import pandas as pd import numpy as np import matplotlib.pyplot as plt #Series s = pd.Series([i*2 for i in xrange(1 , 11)]) print s 打印结果为: 0 2 1 4 2 6 3 8 4 10 5
pandas学习(创建数据,基本操作)
pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维array类似,二者与Python基本数据结构List很相似,Series能保存不同数据类型,字符串,boolbean值.数字等都能保存在Series中 DataFrame 二维的表格型数据结构.很多功能与R中的data frame类似.可以将DataFrame理解为Series的容器. Series类
机器学习入门-数值特征-数据四分位特征 1.quantile(用于求给定分数位的数值) 2.plt.axvline(用于画出竖线) 3.pd.pcut(对特征进行分位数切分,生成新的特征)
函数说明: 1. .quantile(cut_list) 对DataFrame类型直接使用,用于求出给定列表中分数的数值,这里用来求出4分位出的数值 2. plt.axvline() # 用于画出图形中的竖线 3. pd.qcut(feature, cut_list, labels) 用于对特征进行切分,cut_list切分的分数位置,labels切分后新的标签值 我们可以根据某个特征的四分位数值,给定这个特征一个新的四分位数值的特征 四分位表示的是数值的中位数,1/4位和3/4位 比
pandas数据操作
pandas数据操作 字符串方法 Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素 t = pd.Series(['a_b_c_d','c_d_e',np.nan,'f_g_h']) t t.str.cat(['A','B','C','D'],sep=',') #拼接字符串 t.str.split('_') #切分字符串 t.str.get(0) #获取指定位置的字符串 t.str.replace("_", ".") #替
分位函数(四分位数)概念与pandas中的quantile函数
p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=’linear’) 参数 - q : float or array-like, default 0.5 (50% quantile 即中位数-第2四分位数) 0 <= q <= 1, the quantile(s) to compute - axis : {0, 1, ‘index’,
pandas绘图总结
转自:http://blog.csdn.net/genome_denovo/article/details/78322628 pandas绘图总结 pandas中的绘图函数(更加详细的绘图资料可参考pandas.pdf文档中的Visualization这一章) >>> import pandas as pd >>> import numpy as np >>> from pandas import Series, DataFrame >>&
Pandas v0.23.4手册汉化
Pandas手册汉化 此页面概述了所有公共pandas对象,函数和方法.pandas.*命名空间中公开的所有类和函数都是公共的. 一些子包是公共的,其中包括pandas.errors, pandas.plotting,和pandas.testing.文档中提到了公共函数 pandas.io和pandas.tseries子模块.pandas.api.types分包包含一些与pandas中的数据类型相关的公共函数 输入/输出 Pickling read_pickle(path[, compressi
pandas时间序列学习笔记
目录 创建一个时间序列 pd.date_range() info() asfred() shifted(),滞后函数 diff()求差分 加减乘除 DataFrame.reindex() 通过data_range指定时间序列的起止时间 通过as.fred()指定时间序列的间隔 interpolate() resample() 补充一个绘图的参数 first() pct_change() pd.contact() agg() rolling window functions. rolling()
数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.txt', delimiter='\t') 1.1 标准化 (Z-Score) x'=(x-mean)/std 原转换的数据为x,新数据为x′,mean和std为x所在列的均值和标准差 标准化之后的数据是以0为均值,方差为1的正态分布. 但是Z-Score方法是一种中心化方法,会改变原有数据的分布结构,不适合
数据可视化实例(九): 边缘箱形图(matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter7/chapter7 边缘箱形图 (Marginal Boxplot) 边缘箱图与边缘直方图具有相似的用途. 然而,箱线图有助于精确定位 X 和 Y 的中位数.第25和第75百分位数. 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib
pandas之数值计算与统计
数值计算与统计 对于DataFrame来说,求和.最大.最小.平均等统计方法,默认是按列进行统计,即axis = 0,如果添加参数axis = 1则会按照行进行统计. 如果存在空值,在统计时默认会忽略空值,如果添加参数skipna = False,统计时不会忽略空值. round(n) 保留n个小数 count() 非NaN的元素个数 sum() 和 mean() 平均值 median() 中位数 max() 最大值 min() 最小值 mode()众数 std() 标准差 var
pandas - 异常值处理
异常值概念:是指那些远离正常值的观测,即“不合群”观测.异常值的出现一般是人为的记录错误或者是设备的故障等,异常值的出现会对模型的创建和预测产生 严重的后果.当然异常值也不一定是坏事,有些情况下,通过寻找异常值就能够给业务带来良好的发展,如销毁“钓鱼”网站,关闭“薅羊毛”用户的权限等. 异常值的判定方法: 1.n个标准差法 2.箱线图法 标准差法,就是用以样本均值+样本标准差为基准,如果样本离平均值相差2个标准差以上的就是异常值 箱线图法:以上下四分位作为参考, x > Q3+nIQR 或者 x
pandas(5):数学统计——描述性统计
Pandas 可以对 Series 与 DataFrame 进行快速的描述性统计,方便快速了解数据的集中趋势和分布差异.源Excel文件descriptive_statistics.xlsx: 一.描述性统计汇总df.describe() df.describe(percentiles=None, include=None, exclude=None) 参数说明: percentiles,百分位数,默认为[.25, .5, .75],即上下四分位数和中位数,其中,中位数一定输出: include
Lesson6——Pandas Pandas描述性统计
1 简介 描述统计学(descriptive statistics)是一门统计学领域的学科,主要研究如何取得反映客观现象的数据,并以图表形式对所搜集的数据进行处理和显示,最终对数据的规律.特征做出综合性的描述分析. 下列表格对 Pandas 常用的统计学函数做了简单的总结: 函数名称 描述说明 count() 统计某个非空值的数量. sum() 求和 mean() 求均值 median() 求中位数 mode() 求众数 std() 求标准差 min() 求最小值 max() 求最大值 abs(
pandas补充(其二)与matplotlib补充
今日内容概要 pandas补充知识(2) matplotlib补充知识 今日内容详细 pandas补充 数据汇总 # 数据透视表 pd.pivot_table(data,values-None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna=True,margins_name='All') data:指定需要构造透视表的数据集 values:指定需要拉入"数值"框的字段列表 inde
pandas基础-Python3
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEMON" import pandas as pd d = pd.date_range(', periods=7) aList = list(range(1,8)) df = pd.DataFrame(aList, index=d, columns=[' ']) df.index.name = 'val
10 Minutes to pandas
摘要 一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型 十.画图 十一.导入和保存数据 内容 # coding=utf-8import pandas as pdimport numpy as np### 一.创建对象## 1.可以传递一个list对象创建一个Series,Pandas会默认创建整型索引s = pd.Series([1, 3, 5, np.nan, 6,
利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join()方法也是连接字符串,比较它和"+"符号的区别: in关键字判断一个字符串是否包含在另一个字符串中: index()方法和find()方法判断一个子字符串的位置: index()方法和find()方法的区别是:如果不包含子字符串,index()会抛出一个异常,而find()会返回-1. c
利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理方法为滤掉或者填充. 滤除缺失数据 对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如: 对于DataFrame,dropna()函数同样会丢掉所有含有空元素的数据,例如: 但是可以指定how='all',这表示只有行里的数据全部为空时才丢弃,例如:
热门专题
oracle 11gr2 配置监听
windows设置socket5 代理 带密码
mybatis 执行任意sql语句
k8s获取java内存dump分析
如何读取超大excel
R语言中combn()
opencv 图像对齐
go iris post 字符传
express代理静态服务器 反向代理
js判断html属性是否存在
对象转fastjson怎么修改属性
django ajax 返回Excel
arcgis 根据点数据进行视域分析
bootstrap框架设置字体兼容
linux无法用主机名代替ip
win Java 飞行记录器
前端开发生产环境解决跨域ngnix
vue 两次输入密码不同
DataGridViewColumn 可输入的
华为5700 VLAN地址删除