首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pytorch word2vec 准确率
2024-11-02
基于pytorch实现word2vec
一.介绍 word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包.它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量. Word2vec的模型以大规模语料库作为输入,然后生成一个向量空间(通常为几百维).词典中的每个词都对应了向量空间中的一个独一的向量,而且语料库中拥有共同上下文的词映射到向量空间中的距离会更近. word2vec目前普遍使用的是Google2013年发布的C语言版本,现在也有Java.C++.p
pytorch --- word2vec 实现 --《Efficient Estimation of Word Representations in Vector Space》
论文来自Mikolov等人的<Efficient Estimation of Word Representations in Vector Space> 论文地址: 66666 论文介绍了2个方法,原理不解释... skim code and comment : # -*- coding: utf-8 -*- # @time : 2019/11/9 12:53 import numpy as np import torch import torch.nn as nn import torch.
pytorch识别CIFAR10:训练ResNet-34(自定义transform,动态调整学习率,准确率提升到94.33%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6. 这里对训练过程增加2个处理: 1.训练数据集做进一步处理:对图片随机加正方形马赛克. 2.每50个epoch,学习率降低0.1倍. 代码具体修改如下: 自定义transform: class Cutout(object): def __init__(self, hole_size): # 正方形马赛克的边长,像素
pytorch识别CIFAR10:训练ResNet-34(数据增强,准确率提升到92.6%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过减小卷积核训练准确率提升到85%. 这里对训练数据集做数据增强: 1.对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪成32*32. 2.按0.5的概率水平翻转图片. 代码具体修改如下: transform_train = transforms.Compose([ # 对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪
pytorch识别CIFAR10:训练ResNet-34(微调网络,准确率提升到85%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过训练准确率只达到80%. 这里对网络做点小修改,在最开始的卷积层中用更小(3*3)的卷积核,并且不缩小图片尺寸,相应的最后的平均池化的核改为4*4. 具体修改如下: class ResNet34(nn.Module): def __init__(self, block): super(ResNet34, self).__init__() # 初始卷积层核池
pytorch识别CIFAR10:训练ResNet-34(准确率80%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何凯明2015年提出了残差神经网络,即Reset,并在ILSVRC-2015的分类比赛中获得冠军. ResNet可以有效的消除卷积层数增加带来的梯度弥散或梯度爆炸问题. ResNet的核心思想是网络输出分为2部分恒等映射(identity mapping).残差映射(residual mapping)
Pytorch实现Top1准确率和Top5准确率
之前一直不清楚Top1和Top5是什么,其实搞清楚了很简单,就是两种衡量指标,其中,Top1就是普通的Accuracy,Top5比Top1衡量标准更“严格”, 具体来讲,比如一共需要分10类,每次分类器的输出结果都是10个相加为1的概率值,Top1就是这十个值中最大的那个概率值对应的分类恰好正确的频率,而Top5则是在十个概率值中从大到小排序出前五个,然后看看这前五个分类中是否存在那个正确分类,再计算频率.Pytorch实现如下: def evaluteTop1(model, loader):
使用 Pytorch 实现 skip-gram 的 word2vec
转载请注明 AIQ - 最专业的机器学习大数据社区 http://www.6aiq.com AIQ 机器学习大数据 知乎专栏 点击关注 链接地址: https://github.com/lonePatient/chinese-word2vec-pytorch 大概 6 次 epochs 之后,可得到一下结果: 目标词 Top10 目标词 Top10 中国 中国 : 1.000 男人 男人 : 1.000 中国 美国 : 0.651 男人 女人 : 0.764 中国 日本 : 0.578 男人
基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site: https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-
word2vec使用说明(google工具包)
word2vec使用说明 转自:http://jacoxu.com/?p=1084. Google的word2vec官网:https://code.google.com/p/word2vec/ 下载下来的Demo源码文件共有如下几个: word2vec – Revision 41: /trunk … LICENSE //Apache LICENSE README.txt //工具使用说明 compute-accuracy.c demo-analogy.sh // demo-classes.
word2vec 入门基础(一)
一.基本概念 word2vec是Google在2013年开源的一个工具,核心思想是将词表征映 射为对应的实数向量. 目前采用的模型有一下两种 CBOW(Continuous Bag-Of-Words,即连续的词袋模型) Skip-Gram 项目链接:https://code.google.com/archive/p/word2vec 二.背景知识 词向量 词向量就是用来将语言中的词进行数学化的一种方式,顾名思义,词向量 就是把一个词表示成一个向量.这样做的初衷就是机器只认识0 1 符号,换句话说
(转)深度学习word2vec笔记之基础篇
深度学习word2vec笔记之基础篇 声明: 1)该博文是多位博主以及多位文档资料的主人所无私奉献的论文资料整理的.具体引用的资料请看参考文献.具体的版本声明也参考原文献 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.语言模型等等基础(如果没
深度学习word2vec笔记之基础篇
作者为falao_beiliu. 作者:杨超链接:http://www.zhihu.com/question/21661274/answer/19331979来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 最近几位google的研究人员发布了一个工具包叫word2vec,利用神经网络为单词寻找一个连续向量空间中的表示.这里整理一下思路,供有兴趣的同学参考. 这里先回顾一下大家比较熟悉的N-gram语言模型. 在自然语言任务里我们经常要计算一句话的概率.比如语音识别
R语言︱文本挖掘——jiabaR包与分词向量化的simhash算法(与word2vec简单比较)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比较执着于Rwordseg,并不代表各位看管执着于我的执着,推荐结巴分词包,小巧玲珑,没有那么多幺蛾子,而且R版本和python版本都有,除了词性标注等分词包必备功能以外,jiebaR还加入了一些基础的文本分析算法,比如提取关键字(TFIDF).分析文本相似性等等,真是老少咸宜. 同时官网也有一个在线jieba
基于pytorch实现HighWay Networks之Highway Networks详解
(一)简述---承接上文---基于pytorch实现HighWay Networks之Train Deep Networks 上文已经介绍过Highway Netwotrks提出的目的就是解决深层神经网络训练困难的问题,以及简单的解释了为什么深层神经网络会出现梯度消失和梯度爆炸的问题,这里详细的介绍一些Highway Networks以及使用pytorch实现Highway Networks. (二)Highway Networks 什么是Highway Networks? Highway Ne
[深度应用]·实战掌握PyTorch图片分类简明教程
[深度应用]·实战掌握PyTorch图片分类简明教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com/xiaosongshine/image_classifier_PyTorch/ 1.引文 深度学习的比赛中,图片分类是很常见的比赛,同时也是很难取得特别高名次的比赛,因为图片分类已经被大家研究的很透彻,一些开源的网络很容易取得高分.如果大家还掌握不了使用开源的网络进行训练,再慢慢去模型调优,很难取得较好的成
深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch
深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(二)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self
深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(一)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFAR10是另一个著名的深度学习图像分类识别数据集,比MINIST更复杂,而且是RGB彩色图片. 看看较简单的LeNet-5可以达到多少准确率.网络结构基本和前面MINIST代码中的差不多,主要是输入图片的通道数不同,代码如下: # -*- coding:utf-8 -*- u"""
word2vec并行实现小记
word2vec能将文本中出现的词向量化,其原理建立在Mikolov的博士论文成果及其在谷歌的研究经验的基础上.与潜在语义分析(Latent Semantic Index, LSI).潜在狄立克雷分配(Latent Dirichlet Allocation)的经典过程相比,word2vec利用了词的上下文,语义信息更加地丰富.word2vec并不是Mikolov某一天拍拍脑袋就给想出来的,也是站在牛人的肩膀上.大牛Bengio(NIPS 2001)借着深度学习的东风提出了一种可并行的神经网络模型
热门专题
图像文字识别OCRpython代码
dotnet 查看模板
移动硬盘无法从mac推出
磁盘活动时间100% 卡顿
vue中input框正则表达式只允许输入数字
zabbix 邮件内容
蓝凌OA 表单对应的表
@AutoConfigureAfter 优先级
c# 全局热键 demo
WPF mvvm关闭
Mysql 将String 拆分后作为查询条件
uipath row插入datatable语法
perl中的@ENV(RCS_PTH)用法
mac ping不通docker
tools.jar和dt.jar
自己做苹果ipa软件
shell脚本 adb shell
adc注入通道和规则通道
sklearn 模型的预测分数
windows2012安装sql2016