这一节使用TF搭建一个简单的神经网络用于分类任务,首先把需要的包引入,另外为了防止在多次运行中一些图中的tensor在内存中影响实验,采取重置操作: import tensorflow as tf import matplotlib.pyplot as plt import numpy as np def reset_graph(seed=42): tf.reset_default_graph() tf.set_random_seed(seed) np.random.seed(seed) res
import mxnet as mx from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data as gdata import time import sys net = nn.Sequential() net.add(nn.Conv2D(channels=6, kernel_size=5, activation='sigmo
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)