[问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) 达到最大值或最小值的点的集合, 即 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\leq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n\}\)\(\cup\)\(\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\geq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n\}\). 假设 \(f(x_1,x_2,\cdots,x_n)\) 是关于未定元 \(x_1,x_2,\cdots,x_n\) 的对称多项式并且 \(S\) 为有限非空集合, 证明: 存在 \(b\in\mathbb{R}\) 使得 \[S=\{(b,b,\cdots,b)\}.\]
例 以下总是假设 \(n\geq 2\).
(1) \(f(x_1,x_2,\cdots,x_n)=x_1^2\) 不是 \(n\) 元对称多项式, \(S=\{(0,b_2,\cdots,b_n)\in\mathbb{R}^n\}\) 是一个无限集, 此时上述问题的结论不成立.
(2) \(f(x_1,x_2,\cdots,x_n)=(x_1+x_2+\cdots+x_n)^2\) 是对称多项式, 但 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(b_1+b_2+\cdots+b_n=0\}\) 是无限集, 此时上述问题的结论不成立.
(3) \(f(x_1,x_2,\cdots,x_n)=x_1^2+x_2^2+\cdots+x_n^2\), \(S=\{(0,0,\cdots,0)\}\), 此时上述问题的结论成立.
注 上述问题改编自13级某位同学问我的非正式问题。他说:“高中老师说,对称多项式达到最大值或最小值的点一定形如 \((b,b,\cdots,b)\) 。”上面的例(2)告诉我们,他的高中老师说的是不对的,至少还差了条件,上述问题就是考虑了次数等于2的情形。问题的证明还是有一定难度的,希望大家能踊跃尝试各种方法进行解答。
[问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)的更多相关文章
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
- [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)
[问题2014S06] 试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间, \(\varphi\) 为 \(V\) 上的线 ...
- [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)
[问题2014S03] 设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...
- 复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...
- [问题2014S07] 复旦高等代数II(13级)每周一题(第七教学周)
[问题2014S07] 设 \(A\in M_n(\mathbb{K})\) 在数域 \(\mathbb{K}\) 上的初等因子组为 \(P_1(\lambda)^{e_1},P_2(\lambda ...
- [问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)
[问题2014S08] 设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \( ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
随机推荐
- 使用 mock.js 让前端开发与后端独立
直接上代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- BizTalk开发系列(三十六) Orchestration单实例执行
BizTalk 是高效的消息处理引擎,采用多线程并发的方式来处理消息.也就是说当有消息被接收的时候就会产生一个新的消息处理实例.但有时目标系统可能并没有并发处理 的能力, 这时就需要在BizTalk中 ...
- Android课程---进度条及菜单的学习
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- js判断字符是否包含字母汉字
<script type="text/javascript"> function check(str) { if (escape(str).indexOf(" ...
- Java - Collection 高效的找出两个List中的不同元素
如题:有List<String> list1和List<String> list2,两个集合各有上万个元素,怎样取出两个集合中不同的元素? 方法1:遍历两个集合 public ...
- ES6 module export options 模块导出、导入语法
http://stackoverflow.com/questions/25494365/es6-module-export-options A year and some later, here is ...
- JavaScript特效(调试笔记)
JavaScript特效 一.在网页上显示当前的时间日期,例如:“2016年3月26日 星期六”. js源代码: function getTime() { var today = new Date() ...
- Git branch 和 Git checkout常见用法
git branch 和 git checkout经常在一起使用,所以在此将它们合在一起 1.Git branch 一般用于分支的操作,比如创建分支,查看分支等等, 1.1 git branch 不带 ...
- join用法
join命令可以将多个文件结合在一起,每个文件里的每条记录,都共享一个键值(key),键值指的是记录中的主字段,通常会是用户名称.个人姓氏.员工编号之类的数据. join - join lines o ...
- django book querysets
from __future__ import unicode_literals from django.db import models from django.contrib.auth.models ...