Description

我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。
    给定N和S,计算不大于N的幸运数个数。

Input

输入的第一行包含整数N。
    接下来一行一个整数M,表示S中元素的数量。
    接下来M行,每行一个数字串,表示S中的一个元素。

Output

输出一行一个整数,表示答案模109+7的值。

Sample Input

20
3
2
3
14

Sample Output

14

解题思路:

很明显是个数位Dp,相当于n位的不要62,由于不要62的字符个数是可以枚举的,这个不可以。

设计一个状态dp[i][j][onlim(0/1)][zero(0/1)]来表示字符到了 i 位,Trie图上到了 j 号节点,是否压了上线,是否有前导零。

转移则是寻找Trie图上一个子节点,如果不代表字符的结束,那么进一位,判断是否压上界,是否为零即可。

注意子节点为root时不向下转移Trie图(即失配)

代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
const lnt mod=(lnt)(1e9+);
struct trnt{
int ch[];
int fl;
bool fin;
}tr[];
class queue{
public:
queue(void){h=,t=;return ;}
int nxt(int x){if(x+==)return ;return x+;}
int front(void){return line[h];}
void pop(void){h=nxt(h);return ;}
void push(int x){t=nxt(t);line[t]=x;return ;}
bool empty(void){return nxt(t)==h;}
private:
int h,t,line[];
}Q;
int siz;
int n,m;
int l;
char tmp[];
int num[];
lnt dp[][][][];
void Insert(char *a)
{
int root=;
int len=strlen(a+);
for(int i=;i<=len;i++)
{
int c=a[i]-'';
if(!tr[root].ch[c])
tr[root].ch[c]=++siz;
root=tr[root].ch[c];
}
tr[root].fin=true;
return ;
}
void Build(void)
{
int root=;
for(int i=;i<;i++)
if(tr[root].ch[i])
Q.push(tr[root].ch[i]);
while(!Q.empty())
{
root=Q.front();
Q.pop();
tr[root].fin|=tr[tr[root].fl].fin;
for(int i=;i<;i++)
if(tr[root].ch[i])
{
tr[tr[root].ch[i]].fl=tr[tr[root].fl].ch[i];
Q.push(tr[root].ch[i]);
}else
tr[root].ch[i]=tr[tr[root].fl].ch[i];
}
return ;
}
int main()
{
scanf("%s",tmp+);
l=strlen(tmp+);
for(int i=;i<=l;i++)
num[i]=tmp[i]-'';
scanf("%d",&m);
for(int i=;i<=m;i++)
{
scanf("%s",tmp+);
Insert(tmp);
}
Build();
dp[][][][]=;
for(int i=;i<=l;i++)
{
for(int j=;j<=siz;j++)
{
for(int onlim=;onlim<;onlim++)
{
for(int zero=;zero<;zero++)
{
if(!dp[i-][j][onlim][zero])
continue;
int lim=onlim*num[i]+(-onlim)*;
for(int c=;c<=lim;c++)
{
if(tr[tr[j].ch[c]].fin)
continue;
int nwlim=onlim&&(c==lim);
int nwzro=zero&&(!c);
int nwplc=(-nwzro)*tr[j].ch[c];
dp[i][nwplc][nwlim][nwzro]=(dp[i][nwplc][nwlim][nwzro]+dp[i-][j][onlim][zero])%mod;
}
}
}
}
}
lnt ans=;
for(int i=;i<=siz;i++)
ans=(ans+dp[l][i][][]+dp[l][i][][])%mod;
printf("%lld\n",(ans+mod)%mod);
return ;
}

BZOJ3530: [Sdoi2014]数数(Trie图,数位Dp)的更多相关文章

  1. BZOJ_3209_花神的数论题_组合数+数位DP

    BZOJ_3209_花神的数论题_组合数+数位DP Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又 ...

  2. [bzoj3530][Sdoi2014]数数_AC自动机_数位dp

    数数 bzoj-3530 Sdoi-2014 题目大意:给你一个整数集合,求所有不超过n的正整数,是的它的十进制表示下不能再一段等于集合中的任意数. 注释:$1\le n \le 1200$,$1\l ...

  3. 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 682  Solved: 364 Description 我们称一 ...

  4. 【JZOJ3624】【SDOI2014】数数(count) AC自动机+数位dp

    题面 100 容易想到使用AC自动机来处理禁忌子串的问题: 然后在自动机上数位dp,具体是: \(f_{i,j,0/1}\)表示填了\(i\)位,当前在自动机的第\(j\)个结点上,\(0\)表示当前 ...

  5. uva11361 特殊数的数量(数位dp)

    题目传送门 题目大意:给你一个n-m的区间,问你这个闭区间内的特殊数有几个,特殊数的要求是 数的本身 和 各位数字之和  mod k 等于0. 思路:刚接触数位dp,看了网上的题解,说用dp[i][j ...

  6. 【ECNU77】位与数对个数(数位DP)

    点此看题面 大致题意: 求\(\sum_{x=0}^{a-1}\sum_{y=0}^{b-1}[(x\&y)<k]\). 数位\(DP\) 显然数位\(DP\)吧. 我们设\(f_{n, ...

  7. 【Dream Counting, 2006 Dec-数数的梦】数位dp

    题意:给定两个数,问区间[A,B]中0~9分别出现了多少次.A,B<=10^18 题解:应该是最裸的数位dp吧..一开始没有记忆化tle了TAT 我们可以求出区间[0,B]的,再减去区间[0,A ...

  8. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

  9. P4317 花神的数论题 动态规划?数位DP

    思路:数位$DP$ 提交:5次(其实之前A过,但是调了调当初的程序.本次是2次AC的) 题解: 我们分别求出$sum(x)=i$,对于一个$i$,有几个$x$,然后我们就可以快速幂解决. 至于求个数用 ...

随机推荐

  1. ListView阻尼效果

    效果图省略.. . activity_main.xml(仅仅有一个自己定义ListView) <RelativeLayout xmlns:android="http://schemas ...

  2. java教程(五)SSH框架-配置

    前言:从这篇博客開始我将继续讲述Java教程:SSH篇.主要内容环绕SSH框架分析与搭建,今天先简介一下SSH的配置. SSH配置顺序是: spring-->hibernate-->str ...

  3. java基础 this keyword!

    为了程序的可读性,通常将一个类中的表示同一属性的变量进行统一的命名.可是这样做又会导致成员变量与局部变量名字冲突导致无法訪问成员变量.为了解决问题,java中引入了this这个keyword!所以th ...

  4. HDU 5889 Barricade (Dijkstra+Dinic)

    思路: 首先 先Dijkstra一遍 找出来最短路 不是最短路上的边都不要 然后呢 套个Dinic模板就好了-- 求个最小割 输出 大功告成~~ //By SiriusRen #include < ...

  5. UVALive - 6269 Digital Clock 模拟

    UVALive - 6269 Digital Clock 题意:时钟坏了,给你一段连续的时间,问你现在可能的时间是多少. 思路:直接模拟,他妈的居然这场就跪在了这题,卧槽,他妈的就在111行,居然多打 ...

  6. HDU 5370 Tree Maker

    一个显然的结论是,一棵n个结点的二叉树的形态数,是Catalan数第n项.

  7. Ionic2集成ngx-datatable,ng2-tree第三方控件.md

    1. 基本环境配置 1.1. 命令安装相应的依赖 1.2. 在Module定义中引入对应Module 1.3. 引入对应的CSS 2. 简单使用示例验证是否集成成功 2.1. ngx-datatabl ...

  8. 解决电信或网通的DNS劫持

    大家有没有碰到访问一些不存在域名或者网站时,浏览器本应显示一个网址不存在之类的信息,但是因为现在很多ISP做了DNS劫持将不存在的域名或网址重定向到ISP的广告页面,烦人的狠.其实tomato可以解决 ...

  9. 浅述html5和web app

    题外话:最近跟不少产品解释技术术语,比如脚本.数据库.H5等等,我一般会把他们当成稍微了解这些技术的人,用专业的语言描述一遍,然后用通俗的语言解释一遍,最后举例子解释一遍. 肯定有人问,你把流程反过来 ...

  10. js编码方式详解

    escape.encodeURI 和encodeURIComponent 的区别 escape(), encodeURI()和encodeURIComponent()是在Javascript中用于编码 ...