题目链接: 题目链接

题意:如果一个数二进制n有k位1,那么f1[n] = k,如果k有s位二进制1,那么f2[n] = f1[k] = s.  如此往复,直到fx[n] = 1,此时的x就是n的”K值“,现在要求[L,R]内的”K值“为X的数有多少个。(1<=L<=R<=10^18)

解法:首先可以看到10^18最多只有61位左右的数,所以我们只需处理1~61之间每个数有多少个1,即可知道1~61之间每个数”K值“是多少。

然后就将求[L,R]之间的个数变成求[1,R]-[1,L-1],所以我们只需数出对于每个数n,[1,n]之间有多少个数的”K值“为X即可。

对于二进制来说,可以这样搜索出来:

比如<=101001,要满足有k个1的数的个数,那么我们从高位往低位扫,扫到第一个1,那么现在有两种情况:

1.此处放1:那么就等于求<=1001时放k-1个1的数的个数

2.此处放0:那么后面就随便放了,为C[5][k]

所以如此递归的搜索就可得出答案,也可以用DP做。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std; int Count(ll state) {
int cnt = ;
while(state) {
if(state & 1LL) cnt++;
state >>= ;
}
return cnt;
}
int WEI(ll state) {
int cnt = ;
while(state) {
cnt++;
state >>= ;
}
return cnt;
}
ll C[][];
int in[]; void init()
{
C[][] = ;
for(int i = ; i < ; i++) {
C[i][] = ;
for(int j = ; j <= i; j++) {
C[i][j] = C[i - ][j] + C[i - ][j - ];
}
}
memset(in,,sizeof(in));
in[] = ;
for(int i=;i<=;i++)
in[i] = in[Count(i)]+;
}
int X; ll get(ll state,int cnt) {
if(state < ) return ;
int len = WEI(state);
if(len < cnt) return ; // not enough
if(cnt == ) return ; // no demand
return get(state-(1LL<<(len-)),cnt-) + C[len-][cnt];
} ll getsum(ll R,ll L) {
ll ans = ;
for(int i=;i<=;i++)
if(in[i]+ == X) ans += get(R,i)-get(L-,i);
return ans;
} int main()
{
init();
int i,j;
ll L,R;
while(scanf("%lld%lld%d",&L,&R,&X)!=EOF && L+R+X)
{
ll ans = ;
if(X == && L == 1LL) { puts(""); continue; }
if(X == && L == 1LL) ans--; //1's binary code is 1, but 1 is not in (X==1)
ans += getsum(R,L);
cout<<ans<<endl;
}
return ;
}

UVALive 4864 Bit Counting --记忆化搜索 / 数位DP?的更多相关文章

  1. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. hdu_3562_B-number(记忆化搜索|数位DP)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3652 题意:给你一个n,为比n小的能整除13并数字中有13的数有多少个 题解:记忆化搜索:记dp[i] ...

  3. 【记忆化搜索/数位DP】zznu2175(长度为n的含有ACM的字符串)

    随机字符串 题目描述 起名字什么的最麻烦,我们来生成一些随机字符串吧 生成的字符串当然是有要求的: .长度不能超过n .字符串中仅包含大写字母 .生成的字符串必须包含字符串“ACM” ok,是不是很简 ...

  4. 记忆化搜索(DFS+DP) URAL 1223 Chernobyl’ Eagle on a Roof

    题目传送门 /* 记忆化搜索(DFS+DP):dp[x][y] 表示x个蛋,在y楼扔后所需要的实验次数 ans = min (ans, max (dp[x][y-i], dp[x-1][i-1]) + ...

  5. 记忆化搜索(DFS+DP) URAL 1501 Sense of Beauty

    题目传送门 /* 题意:给了两堆牌,每次从首部取出一张牌,按颜色分配到两个新堆,分配过程两新堆的总数差不大于1 记忆化搜索(DFS+DP):我们思考如果我们将连续的两个操作看成一个集体操作,那么这个操 ...

  6. HDU 2476 String painter(记忆化搜索, DP)

    题目大意: 给你两个串,有一个操作! 操作时可以把某个区间(L,R) 之间的所有字符变成同一个字符.现在给你两个串A,B要求最少的步骤把A串变成B串. 题目分析: 区间DP, 假如我们直接想把A变成B ...

  7. BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  8. POJ-1088 滑雪 (记忆化搜索,dp)

    滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 86318 Accepted: 32289 Description Mich ...

  9. HDU 4597 Play Game (记忆化搜索博弈DP)

    题意 给出2*n个数,分两列放置,每列n个,现在alice和bob两个人依次从任意一列的对头或队尾哪一个数,alice先拿,且两个人都想拿最多,问alice最后能拿到数字总和的最大值是多少. 思路 4 ...

随机推荐

  1. Xamarin Studio在Mac环境下的配置和Xamarin.iOS常用控件的示例

    看过好多帖子都是Win环境装XS,Mac只是个模拟器,讲解在Mac环境下如何配置Xamarin Studio很少,也是一点点找资料,东拼西凑才把Xamarin Studio装在Mac上跑起来,如下: ...

  2. Spring.Net简单用法

    Spring.Net其实就是抽象工厂,只不过更加灵活强大,性能上并没有明显的区别. 它帮我们实现了控制反转. 其有两种依赖注入方式. 第一:属性注入 第二:构造函数注入 首先,我们去  Spring. ...

  3. int与Integer的爱恨情仇

    int作为java中元老级的数据类型,可谓无处不在,自从jdk5诞生了Integer,从此不在孤单. 为什么要设计Integer呢?它与int有什么区别? 一.Integer是int的包装类型,是引用 ...

  4. Lind.DDD.UoW~方法回调完成原子化操作

    回到目录 本文来自于实践中的不足 在最近开始过程中,遇到了一个问题,之前设计的工作单元UoW只支持Insert,Update,Delete三种操作,即开发人员可以将以上三种操作同时扔进工作单元,由工作 ...

  5. 从头开始搭建分布式日志平台的docker环境

    上篇(spring mvc+ELK从头开始搭建日志平台)分享了从头开始搭建基于spring mvc+redis+logback+logstash+elasticsearch+kibana的分布式日志平 ...

  6. JavaScript进阶篇QA总结

    Q1:常用的运算符有哪些?他们的优先级是怎样的?A1:1.算术运算符:加(+).减(-).乘(×).除(÷),自加一(++),自减一(--):2.比较运算符:大于(>).小于(<).大于等 ...

  7. iOS开发-UI 从入门到精通(三)

    iOS开发-UI 从入门到精通(三)是对 iOS开发-UI 从入门到精通(一)知识点的综合练习,搭建一个简单地登陆界面,增强实战经验,为以后做开发打下坚实的基础! ※在这里我们还要强调一下,开发环境和 ...

  8. Google C++单元测试框架GoogleTest---Extending Google Test by Handling Test Events

    Google TestExtending Google Test by Handling Test Events Google测试提供了一个事件侦听器API,让您接收有关测试程序进度和测试失败的通知. ...

  9. html之file标签 --- 图片上传前预览 -- FileReader

    记得以前做网站时,曾经需要实现一个图片上传到服务器前,先预览的功能.当时用html的<input type="file"/>标签一直实现不了,最后舍弃了这个标签,使用了 ...

  10. ImageView学习

    package liu.roundimagedemo.view; import android.content.Context; import android.graphics.Bitmap; imp ...