【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述
输入
输出
样例输入
2 10007 2 0
样例输出
8
题目大意
问从nk个数中选出若干个,且选出数的数目mod k=r的方案数
题解
dp+快速幂/矩阵乘法
题目描述是骗人的,一个一个加根本不可能加的过来。
关于矩阵乘法的题解可以参考 popoqqq大爷的博客 ,时间复杂度为O(k^3logn),
我的做法是dp+快速幂。
(UPD:后来知道这其实就是循环矩阵乘法)
设 $f[i][j]$ 表示从 $i$ 个数中选出若干个,且选出的数的数目 $\text{mod} k=j$ 的方案数
那么有 $f[i1+i2][j]=\sum((j1+j2)mod k = j)f[i1][j1]∗f[i2][j2]$
这里可能比较难用数学语言表述,但事实上其中的求和符号仅是对于 $j1$ 和 $j2$ ,并不对于 $i1$ 和 $i2$ ,也就是说只要找到任意一组 $i1$ 和 $i2$ ,就可以用 $f[i1]$ 和 $f[i2]$ 推出。
发现这一点类似于乘方,于是我们可以使用快速幂的方法来快速推出f[nk]数组,时间复杂度为O(k^2logn).
注意一下这里k可能等于1,所以初始化时不能简单地将f[0][1]赋为1,而是将f[0][1%k]加上1。
#include <cstdio>
#include <cstring>
typedef long long ll;
int p , k;
struct data
{
ll f[60];
data()
{
memset(f , 0 , sizeof(f));
}
data operator*(const data a)const
{
int i , j;
data tmp;
for(i = 0 ; i < k ; i ++ )
for(j = 0 ; j < k ; j ++ )
tmp.f[(i + j) % k] = (tmp.f[(i + j) % k] + f[i] * a.f[j]) % p;
return tmp;
}
}ans;
data pow(data x , ll y)
{
data ans;
ans.f[0] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
int main()
{
int n , r;
scanf("%d%d%d%d" , &n , &p , &k , &r);
ans.f[0] ++ , ans.f[1 % k] ++ ;
printf("%lld\n" , pow(ans , (ll)n * k).f[r]);
return 0;
}
【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法的更多相关文章
- [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
[BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- hdu_2604Queuing(快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 Queuing Time Limit: 10000/5000 MS (Java/Others) ...
- Number Sequence(快速幂矩阵)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
- bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)
为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
随机推荐
- iOS网络图片缓存详解
在开发移动应用的时候比如Android,IOS,因为手机流量.网速.内存等这些因素,当我们的移动应用是针对互联网,并要频繁访问网络的话,对网络优化这块就显得尤为重要了. 比如某个应用要经常显示网络图片 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 【赛时总结】◇赛时·VII◇ Atcoder ABC-106
[赛时·VII] ABC-106 一条比赛时莫名其妙发了半个小时呆的菜鸡&咸鱼得到了自己应有的下场……279th. Rating:1103(+) 终于AK,一次通过…… ◇ 简单总结 ABC还 ...
- RabbitMQ (1) 环境安装
1.下载erlang, 设置系统的环境变量 下载地址:http://www.erlang.org/downloads ERLANG_HOME=D:\Program\erl9.3 Path = %ERL ...
- JDK学习---深入理解java中的String
本文参考资料: 1.<深入理解jvm虚拟机> 2.<大话数据结构>.<大话设计模式> 3.http://www.cnblogs.com/ITtangtang/p/3 ...
- JS实现禁用滑动条但滑动条不消失的效果
//方法 //滑动条 // left: 37, up: 38, right: 39, down: 40, // spacebar: 32, pageup: 33, pagedown: 34, end: ...
- spring源码学习中的知识点
一.循环依赖 循环依赖就是循环引用,就是两个或多个bean之间互相持有对方. 1.构造器循环依赖 表示通过构造器注入造成的循环依赖,此依赖是无法解决的,只能抛出BeanCurrentlyInCreat ...
- python sys模块和序列化模块
sys模块是与python解释器交互的一个接口: sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit( ...
- 算法:枚举法---kotlin
枚举法:效率低,循环所有的情况,找到正确答案 用于解决数学问题,还是很简单的. 比如,奥数里面: 算 法 描 述 题X题=题题题题题题 其中 算法描述题每一个为一个数字,请写出正确的数字. ok,我们 ...
- springboot遇见问题总结
今天开始学习创建springboot项目 问题1: 产生异常: 创建项目目录: demo代码: 代码Controller import org.springframework.web.bind.ann ...