现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)输出方案数对31011的模

摘自大佬博客:

https://blog.sengxian.com/solutions/bzoj-1016

http://www.cnblogs.com/Y-E-T-I/p/8462255.html#undefined

https://kelin.blog.luogu.org/solution-p4208

https://cnyali-lk.blog.luogu.org/solution-p4208

#include <bits/stdc++.h>
#define fp(i, a, b) for (register int i = a, I = b + 1; i < I; ++i)
#define fd(i, a, b) for (register int i = a, I = b - 1; i > I; --i)
#define go(u) for (register int i = fi[u], v = e[i].to; i; v = e[i = e[i].nx].to)
#define file(s) freopen(s ".in", "r", stdin), freopen(s ".out", "w", stdout)
template <class T>
inline bool cmax(T &a, const T &b) { return a < b ? a = b, : ; }
template <class T>
inline bool cmin(T &a, const T &b) { return a > b ? a = b, : ; }
using namespace std;
const int N = , M = , P = ;
typedef int arr[N];
struct eg
{
int u, v, w;
} e[M];
int n, m, ans = ;
arr fa, bl, vis, g[N], G[N];
vector<int> s[N];
int gf(int u, int *fa) { return fa[u] == u ? u : fa[u] = gf(fa[u], fa); }//find并查集
inline int pls(int a, int b) { return a += b, a >= P ? a - P : a; }//模数不为质数的操作
inline int sub(int a, int b) { return a -= b, a < ? a + P : a; }
inline int det(int n)//返回缩点的生成树个数
{
int a, b, t, f = , tp = ;
fp(i, , n) fp(j, , n) G[i][j] = pls(P, G[i][j]);
fp(i, , n)
{
fp(j, i + , n)
{
a = G[i][i], b = G[j][i];
while (b)
{
t = a / b;
a %= b;
swap(a, b);
fp(k, i, n) G[i][k] = sub(G[i][k], t * G[j][k] % P);
fp(k, i, n) swap(G[i][k], G[j][k]);
f = -f;
}
}
if (!G[i][i])
return ;
tp = tp * G[i][i] % P;
}
return pls(P, f * tp);
}
inline void calc()//合并联通块形成缩点
{
fp(i, , n) if (vis[i])
{
s[gf(i, fa)].push_back(i);
vis[i] = ;
}
fp(i, , n) if (s[i].size() > )
{
int t = s[i].size(), *a = s[i].data();
memset(G, , sizeof G);
fp(j, , t) fp(k, j + , t)
{
int u = a[j - ], v = a[k - ];
if (g[u][v])
{
G[j][k] = G[k][j] = -g[u][v];
G[j][j] += g[u][v], G[k][k] += g[u][v];
}
}
ans = ans * det(t - ) % P;
fp(j, , t) bl[a[j - ]] = i;//属于同一联通块
}
fp(i, , n) s[i].clear(), fa[i] = bl[i] = gf(i, bl);
}
inline bool cmp(const eg &a, const eg &b) { return a.w < b.w; }
int main()
{
#ifndef ONLINE_JUDGE
file("s");
#endif
scanf("%d%d", &n, &m);
fp(i, , n) fa[i] = bl[i] = i;
fp(i, , m) scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
sort(e + , e + m + , cmp);
e[] = e[];
fp(i, , m)
{
//发现不相同的边界点就计算处理
if (e[i].w ^ e[i - ].w)
calc();
//同一权值合并
int u = gf(e[i].u, bl), v = gf(e[i].v, bl);
if (u ^ v)
{
vis[u] = vis[v] = ;
++g[u][v], ++g[v][u];
fa[gf(u, fa)] = gf(v, fa);
}
}
calc();
fp(i, , n) if (bl[i] ^ bl[i - ]) return puts(""), ;
printf("%d", ans);
return ;
}

P4208 [JSOI2008]最小生成树计数的更多相关文章

  1. [洛谷P4208][JSOI2008]最小生成树计数

    题目大意:有$n$个点和$m$条边(最多有$10$条边边权相同),求最小生成树个数 题解:对于所有最小生成树,每种边权的边数是一样的.于是就可以求出每种边权在最小生成树中的个数,枚举这种边的边集,求出 ...

  2. 洛谷P4208 [JSOI2008]最小生成树计数——题解

    题目传送 前置知识:对于同一个图的所有最小生成树,权值相等的边的数量相同. 可以简单证明一下: 我们可以从kruskal的过程考虑.这个算法把所有边按权值大小从小到大排序,然后按顺序看每条边,只要加上 ...

  3. Luogu P4208 [JSOI2008]最小生成树计数

    题意 给定一个 \(n\) 个点 \(m\) 条边的图,求最小生成树的个数. \(\texttt{Data Range:}1\leq n\leq 100,1\leq m\leq 10^4\) 题解 一 ...

  4. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  5. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  6. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 【bzoj1016】[JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4863  Solved: 1973[Submit][St ...

  9. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

随机推荐

  1. 【读书笔记】iOS-工作区的使用

    一,打开Xcode--->File-->New-->Workspace--->AllProject. 二,打开桌面上的AllProject--->File--->N ...

  2. 张钹院士:场景是当前AI产业化最大问题

    张钹院士:场景是当前AI产业化最大问题 https://mp.weixin.qq.com/s/TLdoi9cnY-Crr0FVp2ah6g 在世界机器人大会“青年创新创业专题论坛”上,清华大学人工智能 ...

  3. JMeter http(s)测试脚本录制器的使用

    JMeter http(s)测试脚本录制器的使用 by:授客 QQ:1033553122 http(s) Test Script Recorder允许Jmeter在你使用普通浏览器浏览web应用时,拦 ...

  4. 安卓开发之ScrollView

    当界面不足以将所有的内容显示出来的时候便导致下面的部分内容无法显示出来 所有加上ScrollView 来讲要显示的内容放入之中便可以实现上下滚动界面内容 但是当要显示多个控件的时候会出错  原因是Sc ...

  5. TypeError: __init__() missing 1 required positional argument: 'on_delete'

    报错的原因呢,就是在设计model时我弄了个外键,然后就报错了... 不难看出,它是想让我们在表与表关联时添加一个on_delete参数 解决办法: 如其所愿,加上on_delete=models.C ...

  6. [20170914]tnsnames.ora的管理.txt

    [20170914]tnsnames.ora的管理.txt --//昨天朋友讲tnsnams.ora的内容太长了,而且许多不需要的.管理不方便.我记得以前写[20150409]tnsnames.ora ...

  7. python第六天 函数 python标准库实例大全

    今天学习第一模块的最后一课课程--函数: python的第一个函数: 1 def func1(): 2 print('第一个函数') 3 return 0 4 func1() 1 同时返回多种类型时, ...

  8. 关于MySQL checkpoint

    Ⅰ.Checkpoint 1.1 checkpoint的作用 缩短数据库的恢复时间 缓冲池不够用时,将脏页刷到磁盘 重做日志不可用时,刷新脏页 1.2 展开分析 page被缓存在bp中,page在bp ...

  9. V4L2 driver -整体架构

    我的uvc开源地址:gitee-uvc 字符设备驱动程序核心:V4L2本身就是一个字符设备,具有字符设备所有的特性,暴露接口给用户空间. V4L2 驱动核心:主要是构建一个内核中标准视频设备驱动的框架 ...

  10. 11LaTeX学习系列之---LaTeX的特殊字符

    目录 目录 前言 (一)源代码 (二)输出效果 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第11篇. 前一篇:10LaTeX学习系列之---Latex的文档结构 后一篇:12LaTe ...