单源最短路径算法

时间复杂度O(N2) 优化后时间复杂度为O(MlogN)(M为图中的边数 所以对于稀疏图来说优化后更快)

不支持有负权的图

#include<iostream>
using namespace std;
const int maxn=1024;
const int inf=1<<30;
int n,m;
int d[maxn];
int v[maxn];
int G[maxn][maxn];
void init()
{
	for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) G[i][j]=(i==j?0:inf);
	for(int i=2;i<=n;i++) d[i]=inf,v[i]=0;
	d[1]=0;//这里默认是以1作为起点的
	v[1]=0;
}
int main()
{
	int from,to,dist;
	cin>>n>>m;
	init();
	for(int i=0;i<m;i++){
		cin>>from>>to>>dist;
		G[from][to]=G[to][from]=dist;
	}
	for(int i=1;i<=n;i++){
		int x,m=inf;
		for(int j=1;j<=n;j++){
			if(!v[j]&&d[j]<m)//写成'<'而不是'<='必须要确保图是联通的
				m=d[x=j];
		}
		v[x]=1;
		for(int j=1;j<=n;j++){
			if(G[x][j]<inf/*防止溢出*/&&G[x][j]+d[x]<d[j])
				d[j]=G[x][j]+d[x];
		}
	}
	return 0;
}

  优化后代码

//迪杰斯特拉算法的优化
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
const int maxn=1024;
const int inf=1<<30;
struct Edge{
	int f,t,d;
};
struct Node{
	int d,u;
	bool operator<(const Node& b)const{
		return d>b.d;
	}
};
int n,m;
int d[maxn],v[maxn];
vector<int> G[maxn];
vector<Edge> edges;
priority_queue<Node> Q;
void init(){
	for(int i=1;i<=n;i++) G[i].clear();
	for(int i=1;i<=n;i++) v[i]=0;
	for(int i=2;i<=n;i++) d[i]=inf;
	d[1]=0;
}
int main()
{
	int from,to,dist;
	cin>>n>>m;
	init();
	for(int i=0;i<m;i++){
		cin>>from>>to>>dist;
		edges.push_back((Edge){from,to,dist});
		G[from].push_back(edges.size()-1);
		edges.push_back((Edge){to,from,dist});
		G[to].push_back(edges.size()-1);
	}
	Q.push((Node){0,1});
	while(!Q.empty()){
		Node x=Q.top();Q.pop();
		int u=x.u;
		if(v[u]) continue;
		v[u]=1;
		for(int i=0;i<G[u].size();i++){
			Edge& e=edges[G[u][i]];
			if(d[e.t]>d[u]+e.d){
				d[e.t]=d[u]+e.d;
				Q.push((Node){d[e.t],e.t});
			}
		}
	}
	return 0;
}

  

图的最短路算法 Dijkstra及其优化的更多相关文章

  1. (转)最短路算法--Dijkstra算法

    转自:http://blog.51cto.com/ahalei/1387799         上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短 ...

  2. 最短路算法 Dijkstra 入门

    dijkstra算法 是一种单源点最短路算法求出一个点到其他所有点的最短路. 给你这样的一个图,需要求出1号点到其他点的最短距离是多少. 首先我们开一个数组 d[N],d[x] 代表着从起点出发到x点 ...

  3. 10行实现最短路算法——Dijkstra

    今天是算法数据结构专题的第34篇文章,我们来继续聊聊最短路算法. 在上一篇文章当中我们讲解了bellman-ford算法和spfa算法,其中spfa算法是我个人比较常用的算法,比赛当中几乎没有用过其他 ...

  4. dijkstra最短路算法(堆优化)

    这个算法不能处理负边情况,有负边,请转到Floyd算法或SPFA算法(SPFA不能处理负环,但能判断负环) SPFA(SLF优化):https://www.cnblogs.com/yifan0305/ ...

  5. 图的最短路算法 Bellman-Ford

    BF求图的最短路径的时间复杂度是O(MN),这样的时间复杂度并不比迪杰斯特拉算法好,但是BF算法支持图中存在负权的情况,但图中不能存在负圈,因为如果存在负圈,最短路是不存在的,因此BF算法的另一个重要 ...

  6. 单源最短路——朴素Dijkstra&堆优化版

    朴素Dijkstra 是一种基于贪心的算法. 稠密图使用二维数组存储点和边,稀疏图使用邻接表存储点和边. 算法步骤: 1.将图上的初始点看作一个集合S,其它点看作另一个集合 2.根据初始点,求出其它点 ...

  7. 最短路算法 —— Dijkstra算法

    用途: 解决单源最短路径问题(已固定一个起点,求它到其他所有点的最短路问题) 算法核心(广搜): (1)确定的与起点相邻的点的最短距离,再根据已确定最短距离的点更新其他与之相邻的点的最短距离. (2) ...

  8. 图的最短路算法 Floyd

    多源最短路径算法 时间复杂度O(N3) 简单修改可求有向图的传递闭包 #include<iostream> using namespace std; const int maxn=1024 ...

  9. 图 Graph-图的相关算法

    2018-03-06 17:42:02 一.最短路问题 问题描述:在网络中,求两个不同顶点之间的所有路径中,边的权值之和最小的那一条路径. 这条路径就是两点之间的最短路径 (Shortest Path ...

随机推荐

  1. android的m、mm、mmm编译命令

    android的m.mm.mmm编译命令的使用 android源码目录下的build/envsetup.sh文件,描述编译的命令 - m:       Makes from the top of th ...

  2. Java的clone机制(及String的特殊性)

    1. Clone&Copy 假设现在有一个Employee对象,Employee tobby =new Employee(“CMTobby”,5000),通常我们会有这样的赋值Employee ...

  3. PLSQL_性能优化系列07_Oracle Parse Bind Variables解析绑定变量

    2014-09-25 Created By BaoXinjian

  4. IGS_学习笔记07_IREP通过页面测试客户化Web Service调用(案例)

    20150819 Created By BaoXinjian

  5. PLSQL_Oracle簇表和簇表管理Index clustered tables(案例)

    2012-06-08 Created By BaoXinjian

  6. [实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间

    1 回忆:    $$\bex    \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbo ...

  7. Mac 上SVN上传.a文件

    SVN默认是忽略.a文件,所以修改配置文件去掉忽略配置行的 *.a 通过终端打开配置文件: open ~/.subversion/config 把下面两行(也可能是一行)中的注释和*.a去掉, #gl ...

  8. IceGrid负载均衡部署 z

    [IceGrid负载均衡部署步骤]1.环境主机1:IP=192.168.0.239,上面部署注册表服务器registry和节点node1,registry和node1运行在同一进程中:主机2:IP=1 ...

  9. DXperience-11.1.5 破解

    将DXPerience_11.1.5_Crack里的所有文件粘贴到DXperience-11.1.5的bin文件夹下,然后在cmd运行register.bin

  10. SQLServer 2008以上误操作数据库恢复方法——日志尾部备份(转)

    问题: 经常看到有人误删数据,或者误操作,特别是update和delete的时候没有加where,然后就喊爹喊娘了.人非圣贤孰能无过,做错可以理解,但不能纵容,这个以后再说,现在先来解决问题. 遇到这 ...