【BZOJ2460】元素(贪心,线性基)
【BZOJ2460】元素(贪心,线性基)
题面
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
3
1 10
2 20
3 30
Sample Output
50
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18
,Magici ≤ 10^4
。
题解
如何避免产生一个异或和为\(0\)的子集出现?
这个可以用线性基来维护
又因为要答案最大化
所以按照第二维排序
第一维如果在线性基中存在过
就不产生贡献
最后知己累加
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 2000
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,ans;
struct xxj
{
ll p[60];
ll insert(ll x)
{
for(int i=59;i>=0;--i)
{
if(~x&(1ll<<i))continue;
if(!p[i]){p[i]=x;break;}
x^=p[i];
}
return x;
}
}G;
struct Node{ll x;int v;}a[MAX];
bool cmp(Node a,Node b){return a.v>b.v;}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i].x=read(),a[i].v=read();
sort(&a[1],&a[n+1],cmp);
for(int i=1;i<=n;++i)
if(G.insert(a[i].x))
ans+=a[i].v;
printf("%d\n",ans);
return 0;
}
【BZOJ2460】元素(贪心,线性基)的更多相关文章
- BZOJ2460:[BJWC2011]元素(贪心,线性基)
Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越 ...
- bzoj2460元素(线性基,贪心)
题目大意: 给定\(n\)个二元组\((a,b)\),求一个最大的\(\sum b\)的集合,满足这个集合的任意子集的\(a\)的\(xor\)值不为0 这道题需要一个线性基的性质: 线性基的任何非空 ...
- [BeiJing2011]元素[贪心+线性基]
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1245 Solved: 652[Submit][Stat ...
- BZOJ 2460 元素(贪心+线性基)
显然线性基可以满足题目中给出的条件.关键是如何使得魔力最大. 贪心策略是按魔力排序,将编号依次加入线性基,一个数如果和之前的一些数异或和为0就跳过他. 因为如果要把这个数放进去,那就要把之前的某个数拿 ...
- BZOJ_2460_[BeiJing2011]元素_线性基
BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识 ...
- BZOJ2460 Beijing2011元素(线性基+贪心)
按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...
- BZOJ - 2460 :元素 (贪心&线性基)
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强,但物极必反:有时,人们 ...
- BZOJ2460 [BeiJing2011]元素 【线性基】
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 1675 Solved: 869 [Submit][St ...
- BZOJ 2460:元素(贪心+线性基)
题目链接 题意 中文题意 思路 线性基学习 题目要求选价值最大的并且这些数异或后不为0,可以考虑线性基的性质:线性基的任意一个非空集合XOR之和不会为0.那么就可以贪心地对价值从大到小排序,加入线性基 ...
- 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)
bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...
随机推荐
- ABP 框架集成EF批量增加、删除、修改只针对使用mmsql的
AppService 层使用nuget 添加 EFCore.BulkExtensions 引用 using Abp.Application.Services.Dto; using Abp.Domain ...
- nginx基础配置加基础实战演示
目录 基本配置 设置用户 工作衍生进程数 错误日志存放路径 pid文件存放路径 设置最大连接数 http->server gzip 字符编码 nginx的基本格式 实战配置 虚拟主机配置 开始配 ...
- selenium自动化之元素高亮显示
目的: 在UI自动化的时候,有时候我们需要查看运行的过程.为了更好的显示这个过程,可以进行元素高亮,以显眼的颜色来提示测试人员目前的操作在哪一步. 解决办法: 使用js代码来将元素的背景颜色和边框颜色 ...
- [二读]The Art of Pompeii's Influence on Neo-Classicism
The Art of Pompeii's Influence on Neo-Classicism The discovery of Pompeii's ruins in 1599 profoundly ...
- TW实习日记:第五天
今天可以说是非常忙的一天了,要再项目中实现微信相关的功能:授权登录以及扫码登录,还有就是自建应用的发送消息.首先功能代码其实在经过了几天的学习之后并没有很难,但是最让我难受的是在项目中去加代码,首先s ...
- leetcode- 将有序数组转换为二叉搜索树(java)
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,-3,0, ...
- CSP201609-2:火车购票
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- [转载]linux+nginx+python+mysql安装文档
原文地址:linux+nginx+python+mysql安装文档作者:oracletom # 开发包(如果centos没有安装数据库服务,那么要安装下面的mysql开发包) MySQL-devel- ...
- RNN: Feed Forward, Back Propagation Through Time and Truncated Backpropagation Through Time
原创作品,转载请注明出处哦~ 了解RNN的前向.后向传播算法的推导原理是非常重要的,这样, 1. 才会选择正确的激活函数: 2. 才会选择合适的前向传播的timesteps数和后向传播的timeste ...
- Scrum立会报告+燃尽图(十月二十四日总第十五次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...