用f[i][j][k]表示第一行前i个数,第二行前j个数选k个子矩形的答案,考虑转移:
1.在第一行/第二行选择一个矩形
2.当i=j时,可以选择一个两行的矩形
注意要特判m=1的情况

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int n,m,t,a[105][3],f[105][15],dp[105][105][15];
4 int main(){
5 scanf("%d%d%d",&n,&m,&t);
6 for(int i=1;i<=n;i++)
7 for(int j=1;j<=m;j++){
8 scanf("%d",&a[i][j]);
9 a[i][j]+=a[i-1][j];
10 }
11 if (m==1){
12 for(int i=1;i<=n;i++)
13 for(int j=1;j<=t;j++){
14 f[i][j]=f[i-1][j];
15 for(int k=0;k<i;k++)f[i][j]=max(f[i][j],f[k][j-1]+a[i][1]-a[k][1]);
16 }
17 printf("%d",f[n][t]);
18 return 0;
19 }
20 for(int i=1;i<=n;i++)
21 for(int j=1;j<=n;j++)
22 for(int k=1;k<=t;k++){
23 dp[i][j][k]=max(dp[i-1][j][k],dp[i][j-1][k]);
24 for(int l=0;l<i;l++)dp[i][j][k]=max(dp[i][j][k],dp[l][j][k-1]+a[i][1]-a[l][1]);
25 for(int l=0;l<j;l++)dp[i][j][k]=max(dp[i][j][k],dp[i][l][k-1]+a[j][2]-a[l][2]);
26 if (i==j)
27 for(int l=0;l<i;l++)
28 dp[i][j][k]=max(dp[i][j][k],dp[l][l][k-1]+a[i][1]-a[l][1]+a[i][2]-a[l][2]);
29 }
30 printf("%d",dp[n][n][t]);
31 }

[bzoj1084]最大子矩阵的更多相关文章

  1. 【BZOJ1084】最大子矩阵(动态规划)

    [BZOJ1084]最大子矩阵(动态规划) 题面 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式 ...

  2. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

  3. [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp

    最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...

  4. BZOJ1084或洛谷2331 [SCOI2005]最大子矩阵

    BZOJ原题链接 洛谷原题链接 注意该题的子矩阵可以是空矩阵,即可以不选,答案的下界为\(0\). 设\(f[i][j][k]\)表示前\(i\)行选择了\(j\)个子矩阵,选择的方式为\(k\)时的 ...

  5. bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...

  6. bzoj1084&&洛谷2331[SCOI2005]最大子矩阵

    题解: 分类讨论 当m=1的时候,很简单的dp,这里就不再复述了 当m=2的时候,设dp[i][j][k]表示有k个子矩阵,第一列有i个,第二列有j个 然后枚举一下当前子矩阵,状态转移 代码: #in ...

  7. bzoj1084: [SCOI2005]最大子矩阵 dp

    这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 题解:m很小分类讨论,m==1时怎么搞都可以,m==2时,dp[i][j][k]表 ...

  8. bzoj1084【SCOI2005】最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1946  Solved: 970 [Submit][id ...

  9. 【bzoj1084】最大子矩阵

    题意 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. \(1≤n≤100,1≤m≤2,1≤k≤10\) 分析 由于\(m\)只有两 ...

随机推荐

  1. nginx搭建网站踩坑经历

    为了更好的阅读体验,请访问我的个人博客 前言 早上刷抖音刷到一个只需要三步的nginx搭建教程(视频地址),觉得有些离谱,跟着复现了一遍,果然很多地方不严谨并且省略了大量步骤,对于很多不了解linux ...

  2. fastjson反序列化-JdbcRowSetImpl利用链

    fastjson反序列化-JdbcRowSetImpl利用链 JdbcRowSetImpl利用链 fastjson反序列化JdbcRowSetImpl - Afant1 - 博客园 (cnblogs. ...

  3. SpringCloud微服务实战——搭建企业级开发框架(二):环境准备

    这里简单说明一下在Windows系统下开发SpringCloud项目所需要的的基本环境,这里只说明开发过程中基础必须的软件,其他扩展功能(Docker,k8s,MinIO,XXL-JOB,EKL,Ke ...

  4. 【Java虚拟机7】ClassLoader源码文档翻译

    前言 学习JVM类加载器,ClassLoader这个类加载器的核心类是必须要重视的. Notes:下方蓝色文字是自己的翻译(如果有问题请指正).黑色文字是源文档.红色文字是自己的备注. ClassLo ...

  5. SpringCloud 2020.0.4 系列之 Feign

    1. 概述 老话说的好:任何问题都有不止一种的解决方法,当前的问题没有解决,只是还没有发现解决方法,而并不是无解. 言归正传,之前我们聊了 SpringCloud 的服务治理组件 Eureka,今天我 ...

  6. Noip模拟75 2021.10.12

    T1 如何优雅的送分 他说是送分题,我就刚,没刚出来,想到莫比乌斯容斥后就都没推出来 好吧还是不能被恶心的题目,挑衅的语言打乱做题节奏 于是这一场也就没了.... $F(i)$表示$i$的不同质因子集 ...

  7. 编写POC时候的几个参考项目

    0x01. 背景 在编写pocsuite时候,会查阅大量的文件,poc利用方式. ​ 1. pocsuite是什么 Pocsuite 是由知道创宇404实验室打造的一款开源的远程漏洞测试框架.它是知道 ...

  8. 力扣 - 剑指 Offer 57 - II. 和为s的连续正数序列

    题目 剑指 Offer 57 - II. 和为s的连续正数序列 思路1(双指针/滑动窗口) 所谓滑动窗口,就是需要我们从一个序列中找到某些连续的子序列,我们可以使用两个for循环来遍历查找,但是未免效 ...

  9. word-break-ii leetcode C++

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

  10. Shooting Bricks题解

    题目传送门 以后我绝对不会一直磕着一道题磕几个小时了...感觉还是自己节奏出了问题,不知为啥感觉有点小慌... 算了,其实再回头仔细看一下这个题dp的思路还是比较好想出来的,打代码之前一定要做好足够的 ...