数字表格(product)
Description
Solution
一开始的时候我是这么推的(\(f(n)\)表示斐波那契数列的第\(n\)项)
Ans&=\prod_{x=1}^{\min(n,m)}f(x)^{(\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=x])}\\
&=\prod_{x=1}^{\min(n,m)}f(x)^{\sum_{e=1}^{\min(\lfloor\frac nx\rfloor,\lfloor \frac mx\rfloor)}\mu(e)\lfloor\frac n {ex}\rfloor\lfloor\frac m {ex}\rfloor}\\
\end{aligned}
\]
然后我想,根号分段套根号分段,\(\mathcal O(\sqrt n(\log+\sqrt n))\)解决!嗯不错,一看数据组数1000........不过还是能拿70的分。
题解的思路非常神。
假设我们能构造一个函数\(g\),使得
\]
那么答案就变成
Ans&=\prod_{i=1}^n\prod_{j=1}^mf({\gcd(i,j))}\\
&=\prod_{i=1}^n\prod_{j=1}^m\prod_{d|i,d|j}g(d)\\
&=\prod_{d=1}^{\min(n,m)}g(d)^{\lfloor\frac nd\rfloor\lfloor\frac md\rfloor}
\end{aligned}
\]
这样就可以在\(\mathcal O(2\sqrt n)\)的时间内处理每一个询问了。前提是我们知道\(g\)及其前缀积。
考虑式子\(f(n)=\prod_{d|n}g(d)\)十分像莫比乌斯反演,能否用类似的形式反演出\(g\)呢?
在\(\sum\)的意义下
\]
反演的本质是通过加减来容斥出所需要的组合。而在乘法的意义下,不就是通过乘除来容斥出所需要的组合吗?所以有:
\]
因此我们可以在\(\mathcal O(n \lg n)\)的时间内处理出\(g\)的取值和前缀积。那么上面的根号分段也就迎刃而解了。
总体思路是仿造莫比乌斯反演构造一个可求函数,利用该函数化简式子使得答案求和式变得简明且复杂度较低,再通过传统根号分段求解。
Code
#include <cstdio>
using namespace std;
const int N=1e6+10,MOD=1e9+7,PMOD=MOD-1;
int n,m;
int fib[N],ifib[N],g[N],ig[N];
bool vis[N];
int p[N],pcnt,mu[N];
inline int min(int x,int y){return x<y?x:y;}
inline int fmi(int x,int y){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
void sieve(){
mu[1]=1;
for(int i=2;i<=1e6;i++){
if(!vis[i]) p[++pcnt]=i,mu[i]=-1;
for(int j=1;j<=pcnt&&i*p[j]<=1e6;j++){
int x=i*p[j];
vis[x]=true;
if(i%p[j]==0){
mu[x]=0;
break;
}
mu[x]=-mu[i];
}
}
}
void prework(){
sieve();
fib[0]=0; fib[1]=1; ifib[1]=1;
for(int i=2;i<=1e6;i++){
fib[i]=(fib[i-2]+fib[i-1])%MOD;
ifib[i]=fmi(fib[i],MOD-2);
}
for(int i=1;i<=1e6;i++) g[i]=1;
for(int d=1;d<=1e6;d++)
for(int n=d;n<=1e6;n+=d)
g[n]=1LL*g[n]*(mu[n/d]==1?fib[d]:(mu[n/d]==-1?ifib[d]:1))%MOD;
g[0]=ig[0]=1;
for(int i=1;i<=1e6;i++){
g[i]=1LL*g[i]*g[i-1]%MOD;
ig[i]=fmi(g[i],MOD-2);
}
}
int main(){
prework();
int T,up,ans;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
up=min(n,m);
ans=1;
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans=1LL*ans*fmi(1LL*g[j]*ig[i-1]%MOD,1LL*(n/i)*(m/i)%PMOD)%MOD;
}
printf("%d\n",ans<0?ans+MOD:ans);
}
return 0;
}
数字表格(product)的更多相关文章
- 数字表格(product)
Portal -->broken qwq Description 求\(\prod\limits_{i=1}^n\prod\limits_{j=1}^m f[gcd(i,j)](mod\ ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- 【BZOJ】【2154】Crash的数字表格
莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
- BZOJ 4816 数字表格
首先是惯例的吐槽.SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇.学长说考SDOI可以考出联赛分数,%%%. 下面放解题报告.并不喜 ...
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- 【BZOJ4816】数字表格(莫比乌斯反演)
[BZOJ4816]数字表格(莫比乌斯反演) 题面 BZOJ 求 \[\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]\] 题解 忽然不知道这个要怎么表示... 就写成这样吧 ...
- 【BZOJ2154】Crash的数字表格(莫比乌斯反演)
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...
随机推荐
- ubuntu/linux中安装Tomcat(附图解详细步骤)
我的linux系统使用的是ubuntu14 1.首先需要先到Tomcat官网上下载对应linux系统的压缩包,可以直接在Ubuntu系统中进行下载,下载后的默认路径为主文件夹路径下的下载文件目录下 注 ...
- HIVE函数的UDF、UDAF、UDTF
一.词义解析 UDF(User-Defined-Function) 一进一出 UDAF(User- Defined Aggregation Funcation) 多进一出 (聚合函数,MR) UDTF ...
- 【翻译】HOG, Histogram of Oriented Gradients / 方向梯度直方图 介绍
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/ ...
- Hyperledger Fabric CA User’s Guide——概述(二)
概述 下面的图表说明了如何将Hyperledger Fabric CA与总体的Hyperledger Fabric结构相匹配. 有两种方式与一种Hyperledger Fabric CA服务器进行交互 ...
- 高可用OpenStack(Queen版)集群-11.Neutron计算节点
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- MySQL基础(一)
首先需要安装MySOL,这里我是在windows环境下安装的,具体教程可以参考https://www.cnblogs.com/xsmile/p/7753984.html,不过要注意安装过程可能会不太顺 ...
- 阿里云oracle启动失败
1.监听启动失败: 将$ORACLE_HOME/network/admin 中的listener.ora中的主机名改为localhost 2.sqlplus中startup启动失败 ,出现ORA-00 ...
- 5337朱荟潼Java实验报告一
一.实验内容 1.内容一输出“Hello 名”. import java.util.Scanner;public class Hello{public static void main(String[ ...
- ubuntu下安装matlab2015b
========= 安装过程 1.下载MATLAB2015b破解版 操作系统:Ubuntu 16.04 LTS 程序文件:Matlab2015b-glnxa64破解版 解压提取文件:在ubuntu系统 ...
- JAVA 构造函数 静态变量
class HelloA { public HelloA() { System.out.println("HelloA"); } { System.out.println(&quo ...