[JSOI2009]球队收益
这题好神啊
我们发现一个球队的总比赛场数是确定的,设第\(i\)支球队一共进行了\(s_i\)场比赛
于是这个球队的收益就是\(c_i\times x^2+d_i(s_i-x)^2\)
我们拆开柿子可以发现\(c_ix^2+d_ix^2+d_is_i^2-2xs_id_i\)
我们拿出和\(x\)有关的项来发现\((c_i+d_i)x^2-2s_id_ix\)
现在我们把贡献变成只和胜场数\(x\)有关了,考虑\(x+1\)的时候这个柿子的增量,我们发现是\((2x+1)(c_i+d_i)-2s_id_i\),我们发现这个增量是单增的
于是我们现在可以这样建图
对于每一场比赛我们建一个点,源点向这个点连一条流量为\(1\)费用为\(0\)的边
这个点向对应的两支球队也连一条流量为\(1\)费用为\(0\)的边
对应的两支球队向汇点连流量为\(1\)费用为对应增量的边,同时我们让这两支球队的胜场数的加\(1\)
由于增量是单增的,我们跑的是一个最小费用流,所以肯定会优先选择那些费用较小的也就是对应的胜场数较少的边了
最后的答案就是费用流跑出来的答案加上初始的贡献
代码
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
std::queue<int> q;
const int inf=999999999;
const int maxn=6005;
struct E{int v,nxt,w,f;}e[maxn*10];
int n,m,num=1,S,T;
int head[maxn],vis[maxn],dis[maxn];
int a[maxn],b[maxn],s[maxn],c[maxn],d[maxn],x[maxn],y[maxn];
inline void C(int x,int y,int f,int w) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=w;e[num].f=f;}
inline void add(int x,int y,int f,int w) {C(x,y,f,w),C(y,x,0,-1*w);}
inline int SPFA() {
for(re int i=S;i<=T;i++) dis[i]=inf,vis[i]=0;
dis[T]=0,q.push(T);
while(!q.empty()) {
int k=q.front();q.pop();vis[k]=0;
for(re int i=head[k];i;i=e[i].nxt)
if(e[i^1].f&&dis[e[i].v]>dis[k]+e[i^1].w) {
dis[e[i].v]=dis[k]+e[i^1].w;
if(!vis[e[i].v]) vis[e[i].v]=1,q.push(e[i].v);
}
}
return dis[S]<inf;
}
int dfs(int x,int now) {
if(x==T||!now) return now;
int flow=0,ff;vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].v]&&e[i].f&&dis[e[i].v]==dis[x]+e[i^1].w) {
ff=dfs(e[i].v,min(e[i].f,now));
if(ff<=0) continue;
now-=ff,flow+=ff,e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
inline int zkw() {
int ans=0;
while(SPFA()) {
vis[T]=1;
while(vis[T]) {
for(re int i=S;i<=T;i++) vis[i]=0;
ans+=dfs(S,inf)*dis[S];
}
}
return ans;
}
int main() {
n=read(),m=read();
for(re int i=1;i<=n;i++) a[i]=read(),b[i]=read(),c[i]=read(),d[i]=read();
for(re int i=1;i<=m;i++) x[i]=read(),y[i]=read(),s[x[i]]++,s[y[i]]++;
for(re int i=1;i<=n;i++) s[i]+=a[i]+b[i];
int ans=0;T=n+m+1;
for(re int i=1;i<=n;i++) ans+=c[i]*a[i]*a[i]+d[i]*(s[i]-a[i])*(s[i]-a[i]);
for(re int i=1;i<=m;i++) {
add(S,n+i,1,0),add(n+i,x[i],1,0),add(n+i,y[i],1,0);
add(x[i],T,1,(2*a[x[i]]+1)*(c[x[i]]+d[x[i]])-2*d[x[i]]*s[x[i]]);
add(y[i],T,1,(2*a[y[i]]+1)*(c[y[i]]+d[y[i]])-2*d[y[i]]*s[y[i]]);
a[x[i]]++,a[y[i]]++;
}
printf("%d\n",ans+zkw());
return 0;
}
[JSOI2009]球队收益的更多相关文章
- bzoj 1449 [JSOI2009]球队收益(费用拆分,最小费用流)
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 547 Solved: 302[Submit][Status][ ...
- BZOJ 1449: [JSOI2009]球队收益( 最小费用最大流)
先考虑假如全部输了的收益. 再考虑每场比赛球队赢了所得收益的增加量,用这个来建图.. --------------------------------------------------------- ...
- 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)
[BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...
- 【BZOJ 1449】 1449: [JSOI2009]球队收益 (最小费用流)
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 841 Solved: 483 Description Inpu ...
- 1449: [JSOI2009]球队收益
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 757 Solved: 437[Submit][Status][ ...
- Bzoj1449 [JSOI2009]球队收益
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 741 Solved: 423 Description Input Output 一个整数表示联盟里所有球 ...
- BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流
题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 提示 要求总费用最低 ...
- 【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流
题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 题解 费用流 由于存在一 ...
- BZOJ 1449 JSOI2009 球队收益 费用流
题目大意:给定nn支球队.第ii支球队已经赢了winiwin_i场.输了loseilose_i场,接下来还有mm场比赛.每一个球队终于的收益为Ci∗x2i+Di∗y2iC_i*x_i^2+D_i*y_ ...
随机推荐
- [日常] Go语言圣经--包和文件-导入包习题
1.每个包都有一个全局唯一的导入路径 2.按照惯例,一个包的名字和包的导入路径的最后一个字段相同 练习 2.2: 写一个通用的单位转换程序,用类似cf程序的方式从命令行读取参数,如果缺省的话则是从标准 ...
- 关于电脑重装win10系统导致编译环境失效(jdk)
年前换了固态,于是重装了系统发现之前装在非系统盘的jdk1.8配置过系统环境后仍然不能正常使用的问题,在犹豫一会后选择了重装jdk, 由于之前用的是win7在环境配置上是 变量值内加;即可自行分行,但 ...
- hadoop_完全分布式配置
注:此文章所写内容完全在虚拟机配置,系统:centos,jdk和hadoop已经安装完成所配集群包括hadoop01,hadoop02,hadoop03,hadoop04四台,ip分别为:192.16 ...
- 用MSBuild和Jenkins搭建持续集成环境(1)[收集]
你或其他人刚刚写完了一段代码,提交到项目的版本仓库里面.但等一下,如果新提交的代码把构建搞坏了怎么办?万一出现编译错误,或者有的测试失败了,或者代码不符合质量标准所要求的底限,你该怎么办? 最不靠谱的 ...
- input不可编辑且颜色不变
<input name="ly_qq" type="text" tabindex="2" onMouseOver="this ...
- Linux打包、压缩与解压详解
介绍:在Windows下最常见的压缩文件就只有两种,另一个是.rar,它有.gz..tar.gz.tgz.bz2..Z..tar等众多的压缩文件名,本文就来对这些常见的压缩文件进行总结,在具体总结各类 ...
- JavaSE——线程调度
线程调度: 按照特定机制为线程分配cpu的使用权. 线程调度模型: 分时调度 所有线程轮流获得cpu的使用权,平均分配每个线程占用的cpu的时间片. 抢占时调度(java虚拟机) 可运行池中优先级高的 ...
- OSGI企业应用开发(四)使用Blueprint整合Spring框架(一)
上篇文章中介绍了如何使用独立的Equinox发行包搭建OSGI运行环境,而不是依赖与具体的Eclipse基础开发工具,本文开始介绍如何使用Blueprint將Spring框架整合到OSGI中. 一.开 ...
- AndroidGradle最实用的指南
AndroidStudio目前已经成为Android开发人员的主流工具,而Gradle的原理,配置,使用仍然是很多android开发人员感到困惑的地方.网上虽然有很多相关文档,但是要么是只会用但是不知 ...
- Win10家庭版、专业版、企业版、教育版各版本功能区别对照表
关于Win10系统的版本问题,MS酋长之前曾经分享过Windows10有哪些版本,在这篇文章中简单地介绍了一下Win10各版本的功能区别及适宜用户群,但是并没有对各版本的功能区别做一详细的对比.日前微 ...