gcd和ex_gcd
gcd就是欧几里得算法,可以快速的求出俩个数的最大公因数,进而也可以求其最大公倍数(俩数之积除以最大公因数),比较简单直接看代码就好了,一般用递归版,简短精简,敲得快,但如果数剧奇葩,怕溢出,那就用递推版的。
递归版:
int gcd(int a,int b)
{ if(b==0)
return a;
return gcd(b,a%b);
}
递推版:
int gcd(int a,int b)
{ int r=a%b
while(r>0)
{ a=b;
b=r;
r=a%b; }
return b;
}
ex_gcd就是扩展欧几里得算法,解这个方程:ax+by=d 。也就是ax+by=gcd(a,b) 。若要方程有解,则d=k*gcd(a,b)。是吧.
所以这个函数就是解的这个方程ax+by=gcd(a,b),而最后给解扩大k倍,使d=k*gcd(a,b)就看题意了。
int ex_gcd(int a,int b,int &x,int &y)
{ if(b==0)
{ x=1,y=0;
return a: }
int r=ex_gcd(b,a%b,x,y);
int t=x;
x=y; //解这个方程根据数学推导: x,y表示第一次递归时的值,x1,y1表示第二次递归时的值。那么 y=t-a/b*y; gcd(a,b)==gcd(b,a%b),同时都代入原方程,有ax+by==b*x1+(a%b)*y1。将右边变形一下 b*x1+(a%b)*y1==b*x1+(a-(a/b)*b)*y1==a*y1+b*(x1-(a/b)*y1),最终得到ax+by==a*y1+b*(x1-(a/b)*y1)
return r; 于是才有这个递归通式:x=y1;y=x1-a/b*y1
}
最后函数返回的r是a,b的最大公因数,这应该没问题吧,x,y分别存储函数的一组解。
x=x*(d/r);
y=y*(d/r);//或y=(d-ax)/b;
通常让求x的最小正整数解那么x=(x%(d/r)+d/r)%(d/r). y=(d-ax)/b.
扩展欧几里得用的比较多,各种应用题可以列这个方程解,还有逆元,求a对m的逆元,就是解方程ax+my=1的解(我们已经知道 (a*b)%m=(a%m*b%m)%m 那么如果求(a*b/c)%m则应该怎么化解 ,这时候就要求c的逆元,原式=(a%m*b%m*c~)%m,其中c~是c的逆元)
待续……
gcd和ex_gcd的更多相关文章
- HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- CodeForces 689E Mike and Geometry Problem (离散化+组合数)
Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ...
- ZOJ 3903 Ant(数学,推公示+乘法逆元)
Ant Time Limit: 1 Second Memory Limit: 32768 KB There is an ant named Alice. Alice likes going ...
- HDU 5793 A Boring Question (找规律 : 快速幂+逆元)
A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...
- Educational Codeforces Round 16 D. Two Arithmetic Progressions (不互质中国剩余定理)
Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are gi ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- 数论只会GCD。。。
一些关于GCD的代码.... #include <iostream> #include <cstdio> #include <cstring> using name ...
- HDU5780 gcd 欧拉函数
http://acm.hdu.edu.cn/showproblem.php?pid=5780 BC #85 1005 思路: 首先原式化简:x^gcd(a,b)−1 也就是求n内,(公约数是i的 ...
- 模板-gcd
GCD int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); } EXGCD void ex_gcd(int a, int b, int & ...
随机推荐
- [Java面试九]脚本语言知识总结.
核心内容概述 1.JavaScript加强,涉及到ECMAScript语法.BOM对象.DOM对象以及事件. 2.Ajax传统编程. 3.jQuery框架,九种选择器为核心学习内容 4.JQuery ...
- SSIS Component的ValidateExternalMetadata属性
ValidateExternalMetadata Property Indicates whether the component validates its column metadata agai ...
- 对HTML5新增JS Api的思考
1.为什么javascript的变量名不使用css中的命名方法,而选择使用驼峰命名法 因为在javascript中“-”表示减法,所以如果使用“-”的话会出现不必要的问题. 2.在javascript ...
- hdu Caocao's Bridges(无向图边双连通分量,找出权值最小的桥)
/* 题意:给出一个无向图,去掉一条权值最小边,使这个无向图不再连同! tm太坑了... 1,如果这个无向图开始就是一个非连通图,直接输出0 2,重边(两个节点存在多条边, 权值不一样) 3,如果找到 ...
- hdu1269迷宫城堡(判断有向图是否是一个强连通图)
1 /* 题意: 给你一个图,求这个有向图示否是一个强连通图(每两个节点都是可以相互到达的)! 思路1:按正向边dfs一遍,将经过的节点计数,如果记录的节点的个数小于n,那么就说明图按照正向边就不是连 ...
- 【原创】.NET读写Excel工具Spire.Xls使用(5)重量级的Excel图表功能
本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html .NET读写Excel工具Spire.Xls使用文章 ...
- [java] 注释以及javadoc使用简介-汇率换算器的实现-插曲3
[java] 注释以及javadoc使用简介-汇率换算器的实现-插曲3 // */ // ]]> [java] 注释以及javadoc使用简介-汇率换算器的实现-插曲3 Table of C ...
- 坑人的微信新版支付(V3.3.6)
现在微支付的需求越来越多,最近刚接到一个需要微支付的项目,于是身为程序猿的我拿到最新的微信支付接口文档(3.3.6)就开始研究微信支付.本以为应该跟支付宝差不多的感觉结果被坑了.恕在下无能, ...
- C#日期格式转换
DateTime dt = DateTime.Now; // Label1.Text = dt.ToString();//2005-11-5 13:21:25 // Label2.Text = dt. ...
- mysql插入日期 vs oracle插入日期
今天做oracle日期插入的时候突然开始疑惑日期是如何插入的. 用框架久了,反而不自己做简单的工作了.比如插入. 通常,新建一个表对象,然后绑定数据,前端form提交,后端getModel后直接mod ...