Coursera在线学习---第四节.过拟合问题
一、解决过拟合问题方法
1)减少特征数量
--人为筛选
--靠模型筛选
2)正则化(Regularization)
原理:可以降低参数Θ的数量级,使一些Θ值变得非常之小。这样的目的既能保证足够的特征变量存在(虽然Θ值变小了,但是并不为0),还能减少这些特征变量对模型的影响。换言之,这些特征对于准备预测y值依然能发挥微小的贡献,这样也避免了过拟合问题。(个别Θ值过大,容易过拟合,如果Θ=0,等于缺少个别特征变量,对模型依然不好)
二、具体实例
通常我们并不知道具体使哪些Θ值变小,所以我们就让Θ1,Θ2,...,Θ100 都变小,不包括Θ0。

λ为正则化参数
有了正则化参数 λ就能使后面的Θ1-Θj变小了,因为如果后面的Θ值不变小,J(Θ)的值就会太大了,所以在减小J(Θ)值的过程中会逼着减小Θ的值。
λ值过大,会让Θ1-Θj的值变得非常非常小,这样就只有Θ0的值非常大,几乎变成了y=Θ0一条直线了,会造成欠拟合问题。所以,λ的值应该比较合理才行。另外,正则化参数过多也会出现该问题,可以适时减少参与正则化的参数,例如从Θ2-Θj开始参与正则化等等。
备注:如果模型在训练样本上就表现不好,说明模型欠拟合,需要增加更多的特征变量,可以引入多项式回归(Θ0+Θ1*X+Θ2*X^2+Θ3*X^3),多项式回归方程能让曲线更加弯曲以适应训练样本。这样能更好的拟合训练样本,或者减少正则化参数(例如:从Θ2开始正则化)
Coursera在线学习---第四节.过拟合问题的更多相关文章
- Coursera在线学习---第十节.大规模机器学习(Large Scale Machine Learning)
一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体 ...
- Coursera在线学习---第六节.构建机器学习系统
备: High bias(高偏差) 模型会欠拟合 High variance(高方差) 模型会过拟合 正则化参数λ过大造成高偏差,λ过小造成高方差 一.利用训练好的模型做数据预测时,如果效果不好 ...
- Coursera在线学习---第七节.支持向量机(SVM)
一.代价函数 对比逻辑回归与支持向量机代价函数. cost1(z)=-log(1/(1+e-z)) cost0(z)=-log(1-1/(1+e-z)) 二.支持向量机中求解代价函数中的C值相当于 ...
- Coursera在线学习---第五节.Logistic Regression
一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...
- 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则
第十四节过拟合解决手段L1和L2正则 第十三节中, ...
- Coursera在线学习---第九节(1).异常数据检测(Anomaly Detection)
一.如何构建Anomaly Detection模型? 二.如何评估Anomaly Detection系统? 1)将样本分为6:2:2比例 2)利用交叉验证集计算出F1值,可以用F1值选取概率阈值ξ,选 ...
- VUE2.0实现购物车和地址选配功能学习第四节
第四节 v-on实现金额动态计算 用¥金额 进行格式处理,可以使用原生js进行转换,但是在vuei,使用filter过滤器更加方便 注: 1.es6语法=>和import等 好处在于res参数后 ...
- Coursera在线学习---第九节(2).推荐系统
一.基于内容的推荐系统(Content Based Recommendations) 所谓基于内容的推荐,就是知道待推荐产品的一些特征情况,将产品的这些特征作为特征变量构建模型来预测.比如,下面的电影 ...
- Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...
随机推荐
- java 基础 --File
1, 创建文件 File file = new File(path); file.createNewFile(); //如果路径不存在,会抛异常 file.mkdir();//如果路径不存在,返回fa ...
- perf的统计模式: 突破口: x86_perf_event_update
之前一直以为perf的统计模式也是通过中断出发来的,于是会在中断处理函数中做处理,但是如果perf是统计模式,那么perf的寄存器就不会是溢出的模式了,这个时候,就没有pmu的中断发生,所以很奇怪呢, ...
- Git回滚merge操作
执行完merge操作后,没有修改代码 1.命令 ⑴ git reflog 查看merge操作的上一个提交记录的版本号 ⑵ git reset –hard 版本号 这样可以回滚到merge之前的状态 2 ...
- 第79天:jQuery事件总结(二)
上一篇讲到jQuery中的事件,深入学习了加载DOM和事件绑定的相关知识,这篇主要深入讨论jQuery事件中的合成事件.事件冒泡和事件移除等内容. 一.合成事件 jQuery有两个合成事件——hove ...
- Count the string HDU - 3336
题意: 求一个字符串的每个前缀在这个字符串中出现次数的加和 解析: 默默的骂一句...傻xkmp..博主心里气愤... 拓展kmp就好多了... 因为拓展kmp每匹配一次 就相当于这些前缀出现了一 ...
- [BZOJ1195]最短母串
1195: [HNOI2006]最短母串 Time Limit: 10 Sec Memory Limit: 32 MB Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最 ...
- 【转】Oracle 查询库中所有表名、字段名、表名说明、字段名说明
转自 :http://gis-conquer.blog.sohu.com/170243422.html 查询所有表名:select t.table_name from user_tables t; 查 ...
- 20135239益西拉姆 Linux内核分析 汇编一个简单的c程序并分析其指令过程
益西拉姆+<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 第一周linux内核分析 学习笔记 一.计算机 ...
- 解题:USACO06DEC Milk Patterns
题面 初见SA 用了一个常见的按$height$分组的操作:二分答案,然后按$height$分组,遇到一个$height$小于$mid$的就丢进下一组并更新答案,如果最多的那组不少于$k$个说明可行 ...
- HTML 页面源代码布局介绍
http://www.cnblogs.com/polk6/archive/2013/05/10/3071451.html 此介绍以google首页源代码截图为例: 从上到下依次介绍: 1.<!D ...