bzoj1188: [HNOI2007]分裂游戏
Description
聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000
Input
输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。
Output
对于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不同的取法。
Sample Input
4
1 0 1 5000
3
0 0
1
Sample Output
1
-1 -1
-1
0
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 25
using namespace std;
char ch;
int T,n,a[maxn],sg[maxn],tmp,cnt;
bool ok,bo[maxn*maxn*maxn],first;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
void calc(int i){
for (int j=i+;j<=n;j++) if (sg[j]==-) calc(j);
for (int j=i+;j<=n;j++)
for (int k=j;k<=n;k++) bo[sg[j]^sg[k]]=;
for (int j=;;j++) if (!bo[j]){sg[i]=j;break;}
for (int j=i+;j<=n;j++)
for (int k=j;k<=n;k++) bo[sg[j]^sg[k]]=;
}
int main(){
for (read(T);T;T--){
read(n);
for (int i=;i<=n;i++) read(a[i]);
memset(sg,-,sizeof(sg)),sg[n]=,tmp=;
for (int i=;i<n;i++) if (sg[i]==-) calc(i);
for (int i=;i<n;i++) if (a[i]&) tmp^=sg[i];
if (tmp){
first=,cnt=;
for (int i=;i<=n;i++) if (a[i])
for (int j=i+;j<=n;j++)
for (int k=j;k<=n;k++)
if (!(tmp^sg[i]^sg[j]^sg[k])){
if (first) printf("%d %d %d\n",i-,j-,k-),first=;
cnt++;
}
printf("%d\n",cnt);
}
else puts("-1 -1 -1"),puts("");
}
return ;
}
bzoj1188: [HNOI2007]分裂游戏的更多相关文章
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
- BZOJ1188 [HNOI2007]分裂游戏(SG函数)
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏
因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
随机推荐
- Java 类加载机制详解
一.类加载器 类加载器(ClassLoader),顾名思义,即加载类的东西.在我们使用一个类之前,JVM需要先将该类的字节码文件(.class文件)从磁盘.网络或其他来源加载到内存中,并对字节码进行解 ...
- Java 单元测试Junit
@Test @Before @After 测试方法运行前执行Before动作(比如创建资源),运行后执行After动作(比如销毁资源) @BeforeClass @AfterClass 测试类运行前执 ...
- Hadoop2.6.0在Ubuntu Kylin14.04上的配置
最近几天在忙参加一个云计算比赛,之前也在Ubuntu上配成功过hadoop,不过是按照书上讲的,一步一步来的.因此,印象不深,对自己的帮助也不大.这次趁着机会,自己练了两遍配置过程,感觉收获比较丰富, ...
- [Ruby] Ruby Variable Scope
Scope defines where in a program a variable is accessible. Ruby has four types of variable scope, lo ...
- spring mvc使用ClassPathXmlApplicationContext或FileSystemXmlApplicationContext和XmlWebApplicationContext类的操作其中 XmlWebApplicationContext是专为Web工程定制的。
一.简单的用ApplicationContext做测试的话,获得Spring中定义的Bean实例(对象).可以用: ApplicationContext ac = new ClassPathXmlAp ...
- 把安卓源代码中的system app独立出来,像开发普通app那样开发
个人建议首先依照android源码的ide/eclipse中的格式化xml和import导入到你编译的eclipse中,假设你编译的android源码是2.3以上的版本号的,建议用JDK6 ...
- iOS:编译错误Undefined symbols for architecture i386: _OBJC_CLASS_$_XXX", referenced from: error
Undefined symbols for architecture i386: _OBJC_CLASS_$_XXX", referenced from: error 这个意思为无法找到名为 ...
- rsyslogd配置文件详解
非常详细的rsyslogd配置文件解析 rsyslog服务和logrotate服务=========================================================== ...
- Win7下Qt5.2中使用OpenGL的glu函数库无法使用的解决方案
最近在Window7使用Qt5.2学习OpenGL时,出现了以OpenGL中glu开头的函数库无法使用的错误,例如: 'gluPerspective' was not declared ...
- javascript 鼠標拖動功能
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...