Description

聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000

Input

输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。

Output

对于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不同的取法。

Sample Input

2
4
1 0 1 5000
3
0 0
1

Sample Output

0 2 3
1
-1 -1
-1
0
 
http://blog.csdn.net/thy_asdf/article/details/47319737
 
code:
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 25
using namespace std;
char ch;
int T,n,a[maxn],sg[maxn],tmp,cnt;
bool ok,bo[maxn*maxn*maxn],first;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
void calc(int i){
for (int j=i+;j<=n;j++) if (sg[j]==-) calc(j);
for (int j=i+;j<=n;j++)
for (int k=j;k<=n;k++) bo[sg[j]^sg[k]]=;
for (int j=;;j++) if (!bo[j]){sg[i]=j;break;}
for (int j=i+;j<=n;j++)
for (int k=j;k<=n;k++) bo[sg[j]^sg[k]]=;
}
int main(){
for (read(T);T;T--){
read(n);
for (int i=;i<=n;i++) read(a[i]);
memset(sg,-,sizeof(sg)),sg[n]=,tmp=;
for (int i=;i<n;i++) if (sg[i]==-) calc(i);
for (int i=;i<n;i++) if (a[i]&) tmp^=sg[i];
if (tmp){
first=,cnt=;
for (int i=;i<=n;i++) if (a[i])
for (int j=i+;j<=n;j++)
for (int k=j;k<=n;k++)
if (!(tmp^sg[i]^sg[j]^sg[k])){
if (first) printf("%d %d %d\n",i-,j-,k-),first=;
cnt++;
}
printf("%d\n",cnt);
}
else puts("-1 -1 -1"),puts("");
}
return ;
}

bzoj1188: [HNOI2007]分裂游戏的更多相关文章

  1. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  2. [bzoj1188][HNOI2007]分裂游戏_博弈论

    分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...

  3. BZOJ1188:[HNOI2007]分裂游戏(博弈论)

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...

  4. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  5. [BZOJ1188][HNOI2007]分裂游戏(博弈论)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...

  6. 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏

    因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...

  7. bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status ...

  8. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  9. 【BZOJ1188】分裂游戏(博弈论)

    [BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...

随机推荐

  1. [2012山东省第三届ACM大学生程序设计竞赛]——n a^o7 !

    n a^o7 ! 题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2413 Time Lim ...

  2. MatLab计算图像圆度

    本文所述方法可以检测同一图像中的多个圆形(准确的说,应该是闭合图像). 在Matlab2010a中可以实现. 附录效果图: %颗粒圆度 clear;close all; %% %读取源图像 I = i ...

  3. phoneGap 中修改生成APP的名字

    最近忙着研究移动开发的事情,去学习了一下移动开发的东西,例如eclipse和phoneGap进行配合使用,感觉还是不错的,先针对eclipse和phoneGa的平台搭建这里先不在详细说啦,主要还是我们 ...

  4. 整理Git的命令使用

    Git是一个开源的分布式版本号控制系统,用以有效.快速的处理从非常小到非常大的项目版本号管理.Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源代码的版本号 ...

  5. 使用downloadmanager调用系统的下载

    /** * 文件名 UpdateDownload.java * 包含类名列表 com.issmobile.numlibrary.tool * 版本信息  版本号  * 创建日期 2014年7月14日  ...

  6. Java基础知识强化之集合框架笔记07:Collection集合的遍历之迭代器遍历

    1. Collection的迭代器: Iterator iterator():迭代器,集合的专用遍历方式 2. 代码示例: package cn.itcast_03; import java.util ...

  7. 转载:C# 之泛型详解

    本文原地址:http://www.blogjava.net/Jack2007/archive/2008/05/05/198566.html.感谢博主分享! 什么是泛型 我们在编写程序时,经常遇到两个模 ...

  8. JS获取客户端的窗口大小

    function getClientSize() {    var c = window,    b = document,    a = b.documentElement;    if (c.in ...

  9. C#接口的使用

    .接口: 接口与抽象类一样,也是表示某种规则,一旦使用了该规则,就必须实现相关的方法.对于C#语言而言,由于只能继承自一个父类,因此若有多个规则需要实现,则使用接口是个比较好的做法. .接口的定义 i ...

  10. 对exp full 和 imp full的认识

    前段时间听同事说.Toad 工具可以打开 oracle数据库的 .dmp 文件.今天抽空试了试,果然可以!Oracle 执行 export 操作 会把 表的定义导出.表的数据导出. 其实 .dmp 文 ...