import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
a = data.stack()
print(a)
b = a.unstack()
print(b)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
df = data.set_index("日期")
print(df.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.info())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data["价格"].groupby([data["出发地"],data["目的地"]]).mean()
print(a)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data.groupby([data["出发地"],data["目的地"]],as_index=False).mean()
print(a)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data_1.head())
a = data_1.groupby([data_1["出发地"],data_1["目的地"]],as_index=False).mean()
print(a.head())
b = pd.merge(a,data)
print(b.head())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1,values=["价格"],index=["出发地"],columns=["目的地"])
print(a.head())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1[data_1["出发地"]=="杭州"],values=["价格"],index=["出发地","目的地"],columns=["去程方式"])
print(a)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data_1.head())
print(data_1.isnull().head())
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.isnull())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=0)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=1)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna("missing")
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="pad")
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="bfill",limit=1)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(a.mean())
print(b)

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
fig,ax = plt.subplots(1,1,figsize=(8,5))
ax.hist(df["最低气温"],bins=20)
plt.show()
d = df["最低气温"]
zscore = (d-d.mean())/d.std()
df["isOutlier"]=zscore.abs()>3
print(df.head())
a = df["isOutlier"].value_counts()
print(a)

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\sale_data.csv")
print(np.shape(df))
print(df.head())
a = df[df["卖家"]=="夏奈凤凰旗舰店"]
fig,ax = plt.subplots(1,1,figsize=(8,5))
a.boxplot(column="成交量",ax=ax)
plt.show()
b = a["成交量"]
print(b.describe())
a["isOutlier"]=d>d.quantile(0.75)
c = a[a["isOutlier"]==True]
print(c)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
a = df.duplicated()
print(np.shape(a))
print(a[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated()
print(b[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated("最高气温")
print(b[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(type(df))
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.drop_duplicates("最高气温")
print(np.shape(b))
print(b.head())

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(df.head())
print(df.info())

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.duplicated().value_counts()
print(a)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
b = a.duplicated().value_counts()
print(b)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
print(a.describe())

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(np.shape(df))
fig,axes = plt.subplots(1,2,figsize=(12,5))
axes[0].hist(df["价格"],bins=20)
df.boxplot(column="价格",ax=axes[1])
plt.show()

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
d = df["价格"]
zscore = (d-d.mean())/d.std()
print(zscore[0:3])
df["isOutlier"]=zscore.abs()>3.5
print(df["isOutlier"].value_counts())
a = df[df["isOutlier"]==True]
print(a.head())

吴裕雄 python 数据处理(2)的更多相关文章

  1. 吴裕雄 python 数据处理(3)

    import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...

  2. 吴裕雄 python 数据处理(1)

    import time print(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d %X',time.localtim ...

  3. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  4. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  5. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python 神经网络——TensorFlow pb文件保存方法

    import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...

  7. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

随机推荐

  1. 一个最简的Thinkphp3.2 操作Mongodb的例子

    看到Thinkphp网站上没有调用Mongodb的例子,就写一个一个最简的Thinkphp操作Mongodb的例子.欢迎讨论[前提]Thinkphp对Mongdb的支持依赖于PHP对Mongodb的支 ...

  2. eclipse中的XML文件无法快捷键注释问题

    好多朋友都发现在ME6.0或跟高版本中“Ctrl+Shift+c”或者是“Ctrl+Shift+/”快捷键无论你怎么点,它就是不起作用,恼火吧? 百度 还是 google 都没有找到 合理的说法,更有 ...

  3. Zabbix二次开发_02获取数据

    最近准备写一个zabbix二次页面的呈现.打算调用zabbix api接口来进行展示. 具体流程以及获取的数据. 1.  获得认证密钥    2.  获取zabbix所有的主机组    3.  获取单 ...

  4. 获取 user-agents

    user-agent "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0. ...

  5. zufe oj 引水工程( 巧妙地把在i建水设为e[0][i])

    引水工程 时间限制: 3 Sec  内存限制: 128 MB提交: 11  解决: 6[提交][状态][讨论版] 题目描述 南水北调工程是优化水资源配置.促进区域协调发展的基础性工程,是新中国成立以来 ...

  6. JavaScript-Tool:Numeral.js

    ylbtech-JavaScript-Tool:Numeral.js A javascript library for formatting and manipulating numbers. 1. ...

  7. Mongodb 主从同步

    第一步:我们把mongodb部署多服务器上10.12.0.3和10.14.0.1. 第二步:启动10.12.0.3上的mongodb,把该数据库指定为主数据库 先启动主: mongod --port ...

  8. 理解Storm Metrics

    在hadoop中,存在对应的counter计数器用于记录hadoop map/reduce job任务执行过程中自定义的一些计数器,其中hadoop任务中已经内置了一些计数器,例如CPU时间,GC时间 ...

  9. pandas的set_index和reset_index方法

    import pandas as pd data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b&qu ...

  10. pip安装包(python安装gevent(win))

    下载: https://www.lfd.uci.edu/~gohlke/pythonlibs/#greenlet greenlet greenlet-0.4.14-cp36-cp36m-win_amd ...