import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
a = data.stack()
print(a)
b = a.unstack()
print(b)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
df = data.set_index("日期")
print(df.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.info())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data["价格"].groupby([data["出发地"],data["目的地"]]).mean()
print(a)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data.groupby([data["出发地"],data["目的地"]],as_index=False).mean()
print(a)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data_1.head())
a = data_1.groupby([data_1["出发地"],data_1["目的地"]],as_index=False).mean()
print(a.head())
b = pd.merge(a,data)
print(b.head())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1,values=["价格"],index=["出发地"],columns=["目的地"])
print(a.head())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1[data_1["出发地"]=="杭州"],values=["价格"],index=["出发地","目的地"],columns=["去程方式"])
print(a)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data_1.head())
print(data_1.isnull().head())
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.isnull())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=0)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=1)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna("missing")
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="pad")
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="bfill",limit=1)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(a.mean())
print(b)

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
fig,ax = plt.subplots(1,1,figsize=(8,5))
ax.hist(df["最低气温"],bins=20)
plt.show()
d = df["最低气温"]
zscore = (d-d.mean())/d.std()
df["isOutlier"]=zscore.abs()>3
print(df.head())
a = df["isOutlier"].value_counts()
print(a)

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\sale_data.csv")
print(np.shape(df))
print(df.head())
a = df[df["卖家"]=="夏奈凤凰旗舰店"]
fig,ax = plt.subplots(1,1,figsize=(8,5))
a.boxplot(column="成交量",ax=ax)
plt.show()
b = a["成交量"]
print(b.describe())
a["isOutlier"]=d>d.quantile(0.75)
c = a[a["isOutlier"]==True]
print(c)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
a = df.duplicated()
print(np.shape(a))
print(a[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated()
print(b[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated("最高气温")
print(b[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(type(df))
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.drop_duplicates("最高气温")
print(np.shape(b))
print(b.head())

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(df.head())
print(df.info())

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.duplicated().value_counts()
print(a)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
b = a.duplicated().value_counts()
print(b)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
print(a.describe())

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(np.shape(df))
fig,axes = plt.subplots(1,2,figsize=(12,5))
axes[0].hist(df["价格"],bins=20)
df.boxplot(column="价格",ax=axes[1])
plt.show()

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
d = df["价格"]
zscore = (d-d.mean())/d.std()
print(zscore[0:3])
df["isOutlier"]=zscore.abs()>3.5
print(df["isOutlier"].value_counts())
a = df[df["isOutlier"]==True]
print(a.head())

吴裕雄 python 数据处理(2)的更多相关文章

  1. 吴裕雄 python 数据处理(3)

    import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...

  2. 吴裕雄 python 数据处理(1)

    import time print(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d %X',time.localtim ...

  3. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  4. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  5. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python 神经网络——TensorFlow pb文件保存方法

    import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...

  7. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

随机推荐

  1. CentOS启动网络提示connect: Network is unreachable(配置静态路由)

    ls /etc/sysconfig/network-script/ifcfg-eth0 一.看是否在上述目录下存在ifcfg-eth0 这个文件,若存在则按下面的步骤操作: 1.手工配置ip看能不能配 ...

  2. 惠普(HP)战66 Pro G1 - 批量GHOST[Win10专业版 ] (UEFI)

    笔记本型号:惠普(HP)战66 Pro G1 14英寸轻薄笔记本电脑(i5-8250U 8G 256G PCIe SSD+500G 标压MX150 2G独显)银色 需求: 公司一共采购10台笔记本,需 ...

  3. bzoj2026: [SHOI2009]Coin

    Description Constantine刚结束在MySky Island的度假,正准备离开的时候,他想送给她的好朋友YY一份特别的礼物——MySky Island上特别的手工艺品宝石纪念币.宝石 ...

  4. Apache2.4.7 + php5 + mysql thinkphp

    1. LAMP 的安装sudo apt-get install apache2 2.安装PHP sudo apt-get install  libapache2-mod-php5 php5 php5- ...

  5. web服务器检测

    # coding=utf-8 import sys import socket import re def check_webserver(address, port, resource): addr ...

  6. [转载]Deep Learning(深度学习)学习笔记整理

    转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...

  7. Windows 8的用户模式Shim Engine小探及利用

    转载: https://bbs.pediy.com/thread-175483.htm Windows Shim Engine,即Windows 兼容性模式实现引擎,在exe文件的属性对话框中有一个兼 ...

  8. Windows 应用程序交互过程

     应用程序 Windows的应用程序一般包含窗口(Window),它主要为用户提供一种可视化的交互方式(窗口是由线程(Thread)创建的).Windows 系统通过消息机制来让系统和用户进行交互 ...

  9. Java Internet

    网络通信: 网络通信三要素: IP 协议 端口 TCP: 建立连接,发送速度慢 三次握手协议 UDP: 不需要建立连接,发送速度快 安全性低 a) 使用UDP实现数据的发送 1 创建Socket端点实 ...

  10. 6.13-C3p0连接池配置,DBUtils使用

    DBCP连接池 一.C3p0连接池配置 开源的JDBC连接池 使用连接池的好处: 减轻数据库服务器压力 数据源: ComboPooledDataSource ComboPooledDataSource ...