import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
a = data.stack()
print(a)
b = a.unstack()
print(b)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
df = data.set_index("日期")
print(df.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.info())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data["价格"].groupby([data["出发地"],data["目的地"]]).mean()
print(a)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data.groupby([data["出发地"],data["目的地"]],as_index=False).mean()
print(a)

import pandas as pd

data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data_1.head())
a = data_1.groupby([data_1["出发地"],data_1["目的地"]],as_index=False).mean()
print(a.head())
b = pd.merge(a,data)
print(b.head())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1,values=["价格"],index=["出发地"],columns=["目的地"])
print(a.head())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1[data_1["出发地"]=="杭州"],values=["价格"],index=["出发地","目的地"],columns=["去程方式"])
print(a)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data_1.head())
print(data_1.isnull().head())
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.isnull())

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=0)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=1)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna("missing")
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="pad")
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="bfill",limit=1)
print(b)

import pandas as pd

data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(a.mean())
print(b)

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
fig,ax = plt.subplots(1,1,figsize=(8,5))
ax.hist(df["最低气温"],bins=20)
plt.show()
d = df["最低气温"]
zscore = (d-d.mean())/d.std()
df["isOutlier"]=zscore.abs()>3
print(df.head())
a = df["isOutlier"].value_counts()
print(a)

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\sale_data.csv")
print(np.shape(df))
print(df.head())
a = df[df["卖家"]=="夏奈凤凰旗舰店"]
fig,ax = plt.subplots(1,1,figsize=(8,5))
a.boxplot(column="成交量",ax=ax)
plt.show()
b = a["成交量"]
print(b.describe())
a["isOutlier"]=d>d.quantile(0.75)
c = a[a["isOutlier"]==True]
print(c)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
a = df.duplicated()
print(np.shape(a))
print(a[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated()
print(b[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated("最高气温")
print(b[:5])

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(type(df))
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.drop_duplicates("最高气温")
print(np.shape(b))
print(b.head())

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(df.head())
print(df.info())

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.duplicated().value_counts()
print(a)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
b = a.duplicated().value_counts()
print(b)

import numpy as np
import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
print(a.describe())

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(np.shape(df))
fig,axes = plt.subplots(1,2,figsize=(12,5))
axes[0].hist(df["价格"],bins=20)
df.boxplot(column="价格",ax=axes[1])
plt.show()

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
d = df["价格"]
zscore = (d-d.mean())/d.std()
print(zscore[0:3])
df["isOutlier"]=zscore.abs()>3.5
print(df["isOutlier"].value_counts())
a = df[df["isOutlier"]==True]
print(a.head())

吴裕雄 python 数据处理(2)的更多相关文章

  1. 吴裕雄 python 数据处理(3)

    import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...

  2. 吴裕雄 python 数据处理(1)

    import time print(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d %X',time.localtim ...

  3. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  4. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  5. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python 神经网络——TensorFlow pb文件保存方法

    import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...

  7. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

随机推荐

  1. 关于Spring IOC (DI-依赖注入)

    <Spring入门经典>这本书无论对于初学者或者有经验的工程师还是很值一看的,最近花了点时间回顾了Spring的内容,在此顺带记录一下,本篇主要与spring IOC相关 ,这篇博文适合初 ...

  2. unittest框架模版 (含智能执行类下面所有用例并出报告)

    基础框架一: import unittest class denglu(unittest.TestCase): def setUp(self): #每次执行测试用例前操作步骤 self.verific ...

  3. [转]OBJECT_ID 有哪些种类

    本文来自: http://www.cnblogs.com/biwork/archive/2013/01/07/2849311.html 特别是在建表建存储过程的时候进场会写到: IF OBJECT_I ...

  4. 小甲鱼-003 python插曲值变量和字符串

    变量名就像现实生活人们的名字,把一个值赋值给一个名字时,他会存储在内存中,称之为变量variable,在大多数语言中,都把这种行为成为"给变量赋值"或"把值存储在变量中& ...

  5. Linux故障-bash-4.1$

    #模拟故障:-bash-4.1$ [root@nodchen ~]# su - cisco[cisco@nodchen ~]$ \rm -f .*rm: cannot remove `.': Is a ...

  6. python 正则表达式的处理

    1.基本用法 #!/usr/bin/env python # coding=utf-8 import re # example 1 text ="fjsk test\t fjskd bar\ ...

  7. centos7 设置系统时间与网络同步

    1.安装ntpdate工具 yum -y install ntp ntpdate 2.设置系统时间与网络时间同步 ntpdate cn.pool.ntp.org 3.将系统时间写入硬件时间 hwclo ...

  8. html_常用技巧总结

    =============  博客大全: 脚本之家:http://www.jb51.net/list/list_233_104.htm 红黑联盟: http://www.2cto.com/kf/yid ...

  9. 如何干净的清除Slave同步信息

    MySQL> show master status; +------------------+-----------+--------------+------------------+---- ...

  10. Dependency Injection in ASP.NET Web API 2 Using Unity

    What is Dependency Injection? A dependency is any object that another object requires. For example, ...