吴裕雄 python 数据处理(2)
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
a = data.stack()
print(a)
b = a.unstack()
print(b)

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
df = data.set_index("日期")
print(df.head())

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.info())

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data.head())

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data["价格"].groupby([data["出发地"],data["目的地"]]).mean()
print(a)

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data.groupby([data["出发地"],data["目的地"]],as_index=False).mean()
print(a)

import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data_1.head())
a = data_1.groupby([data_1["出发地"],data_1["目的地"]],as_index=False).mean()
print(a.head())
b = pd.merge(a,data)
print(b.head())

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1,values=["价格"],index=["出发地"],columns=["目的地"])
print(a.head())

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1[data_1["出发地"]=="杭州"],values=["价格"],index=["出发地","目的地"],columns=["去程方式"])
print(a)

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data_1.head())
print(data_1.isnull().head())
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.isnull())

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=0)
print(b)

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=1)
print(b)

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna("missing")
print(b)

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="pad")
print(b)

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="bfill",limit=1)
print(b)

import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(a.mean())
print(b)

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
fig,ax = plt.subplots(1,1,figsize=(8,5))
ax.hist(df["最低气温"],bins=20)
plt.show()
d = df["最低气温"]
zscore = (d-d.mean())/d.std()
df["isOutlier"]=zscore.abs()>3
print(df.head())
a = df["isOutlier"].value_counts()
print(a)


%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\sale_data.csv")
print(np.shape(df))
print(df.head())
a = df[df["卖家"]=="夏奈凤凰旗舰店"]
fig,ax = plt.subplots(1,1,figsize=(8,5))
a.boxplot(column="成交量",ax=ax)
plt.show()
b = a["成交量"]
print(b.describe())
a["isOutlier"]=d>d.quantile(0.75)
c = a[a["isOutlier"]==True]
print(c)

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
a = df.duplicated()
print(np.shape(a))
print(a[:5])

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated()
print(b[:5])

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated("最高气温")
print(b[:5])

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(type(df))
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.drop_duplicates("最高气温")
print(np.shape(b))
print(b.head())

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(df.head())
print(df.info())

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.duplicated().value_counts()
print(a)

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
b = a.duplicated().value_counts()
print(b)

import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
print(a.describe())

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(np.shape(df))
fig,axes = plt.subplots(1,2,figsize=(12,5))
axes[0].hist(df["价格"],bins=20)
df.boxplot(column="价格",ax=axes[1])
plt.show()

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
d = df["价格"]
zscore = (d-d.mean())/d.std()
print(zscore[0:3])
df["isOutlier"]=zscore.abs()>3.5
print(df["isOutlier"].value_counts())
a = df[df["isOutlier"]==True]
print(a.head())

吴裕雄 python 数据处理(2)的更多相关文章
- 吴裕雄 python 数据处理(3)
import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...
- 吴裕雄 python 数据处理(1)
import time print(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d %X',time.localtim ...
- 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python 神经网络——TensorFlow pb文件保存方法
import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)
# -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
随机推荐
- 一个最简的Thinkphp3.2 操作Mongodb的例子
看到Thinkphp网站上没有调用Mongodb的例子,就写一个一个最简的Thinkphp操作Mongodb的例子.欢迎讨论[前提]Thinkphp对Mongdb的支持依赖于PHP对Mongodb的支 ...
- eclipse中的XML文件无法快捷键注释问题
好多朋友都发现在ME6.0或跟高版本中“Ctrl+Shift+c”或者是“Ctrl+Shift+/”快捷键无论你怎么点,它就是不起作用,恼火吧? 百度 还是 google 都没有找到 合理的说法,更有 ...
- Zabbix二次开发_02获取数据
最近准备写一个zabbix二次页面的呈现.打算调用zabbix api接口来进行展示. 具体流程以及获取的数据. 1. 获得认证密钥 2. 获取zabbix所有的主机组 3. 获取单 ...
- 获取 user-agents
user-agent "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0. ...
- zufe oj 引水工程( 巧妙地把在i建水设为e[0][i])
引水工程 时间限制: 3 Sec 内存限制: 128 MB提交: 11 解决: 6[提交][状态][讨论版] 题目描述 南水北调工程是优化水资源配置.促进区域协调发展的基础性工程,是新中国成立以来 ...
- JavaScript-Tool:Numeral.js
ylbtech-JavaScript-Tool:Numeral.js A javascript library for formatting and manipulating numbers. 1. ...
- Mongodb 主从同步
第一步:我们把mongodb部署多服务器上10.12.0.3和10.14.0.1. 第二步:启动10.12.0.3上的mongodb,把该数据库指定为主数据库 先启动主: mongod --port ...
- 理解Storm Metrics
在hadoop中,存在对应的counter计数器用于记录hadoop map/reduce job任务执行过程中自定义的一些计数器,其中hadoop任务中已经内置了一些计数器,例如CPU时间,GC时间 ...
- pandas的set_index和reset_index方法
import pandas as pd data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b&qu ...
- pip安装包(python安装gevent(win))
下载: https://www.lfd.uci.edu/~gohlke/pythonlibs/#greenlet greenlet greenlet-0.4.14-cp36-cp36m-win_amd ...