吴裕雄 python 数据处理(2)
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
a = data.stack()
print(a)
b = a.unstack()
print(b)
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data.head())
df = data.set_index("日期")
print(df.head())
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.info())
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data.head())
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data["价格"].groupby([data["出发地"],data["目的地"]]).mean()
print(a)
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = data.groupby([data["出发地"],data["目的地"]],as_index=False).mean()
print(a)
import pandas as pd
data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_route_cnt.csv")
print(data.head())
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(data_1.head())
a = data_1.groupby([data_1["出发地"],data_1["目的地"]],as_index=False).mean()
print(a.head())
b = pd.merge(a,data)
print(b.head())
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1,values=["价格"],index=["出发地"],columns=["目的地"])
print(a.head())
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = pd.pivot_table(data_1[data_1["出发地"]=="杭州"],values=["价格"],index=["出发地","目的地"],columns=["去程方式"])
print(a)
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(data_1.head())
print(data_1.isnull().head())
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
print(a.isnull())
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=0)
print(b)
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.dropna(axis=1)
print(b)
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna("missing")
print(b)
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="pad")
print(b)
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(method="bfill",limit=1)
print(b)
import pandas as pd
data_1 = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
a = pd.pivot_table(data_1,values=["最高气温"],index=["天气"],columns=["风向"])
print(a)
b = a.fillna(a.mean())
print(b)
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
fig,ax = plt.subplots(1,1,figsize=(8,5))
ax.hist(df["最低气温"],bins=20)
plt.show()
d = df["最低气温"]
zscore = (d-d.mean())/d.std()
df["isOutlier"]=zscore.abs()>3
print(df.head())
a = df["isOutlier"].value_counts()
print(a)
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\sale_data.csv")
print(np.shape(df))
print(df.head())
a = df[df["卖家"]=="夏奈凤凰旗舰店"]
fig,ax = plt.subplots(1,1,figsize=(8,5))
a.boxplot(column="成交量",ax=ax)
plt.show()
b = a["成交量"]
print(b.describe())
a["isOutlier"]=d>d.quantile(0.75)
c = a[a["isOutlier"]==True]
print(c)
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
print(df.head())
a = df.duplicated()
print(np.shape(a))
print(a[:5])
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated()
print(b[:5])
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.duplicated("最高气温")
print(b[:5])
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz_weather.csv")
print(type(df))
print(np.shape(df))
a = df.set_index("日期")
print(a.head())
b = a.drop_duplicates("最高气温")
print(np.shape(b))
print(b.head())
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(df.head())
print(df.info())
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.duplicated().value_counts()
print(a)
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
b = a.duplicated().value_counts()
print(b)
import numpy as np
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
a = df.drop_duplicates()
print(a.describe())
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
print(np.shape(df))
fig,axes = plt.subplots(1,2,figsize=(12,5))
axes[0].hist(df["价格"],bins=20)
df.boxplot(column="价格",ax=axes[1])
plt.show()
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\qunar_free_trip.csv")
d = df["价格"]
zscore = (d-d.mean())/d.std()
print(zscore[0:3])
df["isOutlier"]=zscore.abs()>3.5
print(df["isOutlier"].value_counts())
a = df[df["isOutlier"]==True]
print(a.head())
吴裕雄 python 数据处理(2)的更多相关文章
- 吴裕雄 python 数据处理(3)
import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...
- 吴裕雄 python 数据处理(1)
import time print(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d %X',time.localtim ...
- 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python 神经网络——TensorFlow pb文件保存方法
import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)
# -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
随机推荐
- CentOS启动网络提示connect: Network is unreachable(配置静态路由)
ls /etc/sysconfig/network-script/ifcfg-eth0 一.看是否在上述目录下存在ifcfg-eth0 这个文件,若存在则按下面的步骤操作: 1.手工配置ip看能不能配 ...
- 惠普(HP)战66 Pro G1 - 批量GHOST[Win10专业版 ] (UEFI)
笔记本型号:惠普(HP)战66 Pro G1 14英寸轻薄笔记本电脑(i5-8250U 8G 256G PCIe SSD+500G 标压MX150 2G独显)银色 需求: 公司一共采购10台笔记本,需 ...
- bzoj2026: [SHOI2009]Coin
Description Constantine刚结束在MySky Island的度假,正准备离开的时候,他想送给她的好朋友YY一份特别的礼物——MySky Island上特别的手工艺品宝石纪念币.宝石 ...
- Apache2.4.7 + php5 + mysql thinkphp
1. LAMP 的安装sudo apt-get install apache2 2.安装PHP sudo apt-get install libapache2-mod-php5 php5 php5- ...
- web服务器检测
# coding=utf-8 import sys import socket import re def check_webserver(address, port, resource): addr ...
- [转载]Deep Learning(深度学习)学习笔记整理
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...
- Windows 8的用户模式Shim Engine小探及利用
转载: https://bbs.pediy.com/thread-175483.htm Windows Shim Engine,即Windows 兼容性模式实现引擎,在exe文件的属性对话框中有一个兼 ...
- Windows 应用程序交互过程
应用程序 Windows的应用程序一般包含窗口(Window),它主要为用户提供一种可视化的交互方式(窗口是由线程(Thread)创建的).Windows 系统通过消息机制来让系统和用户进行交互 ...
- Java Internet
网络通信: 网络通信三要素: IP 协议 端口 TCP: 建立连接,发送速度慢 三次握手协议 UDP: 不需要建立连接,发送速度快 安全性低 a) 使用UDP实现数据的发送 1 创建Socket端点实 ...
- 6.13-C3p0连接池配置,DBUtils使用
DBCP连接池 一.C3p0连接池配置 开源的JDBC连接池 使用连接池的好处: 减轻数据库服务器压力 数据源: ComboPooledDataSource ComboPooledDataSource ...